Cyclic colormaps comparison
I started this post looking for a diffusion map on Python, that I didn't find. Then I continued following an example on manifold learning by Jake Vanderplas on a different dataset. It worked nicely,
but the colormap used is Spectral, that is divergent. This made me think about using a cyclic colormap, and ended up in this StackOverflow question. And I decided to compare some cyclic colormaps.
I picked up colormaps from different sources
-
phase
-
hue_L60
erdc_iceFire
nic_Edge
-
colorwheel
cyclic_mrybm_35_75_c68
cyclic_mygbm_30_95_c78
and, of course, hsv
. You can download the colormaps in text
format from here.
Comparison
For all the examples below the following imports are done:
from __future__ import division, print_function import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import LinearSegmentedColormap from colorspacious import cspace_convert
Color map test image
Peter Kovesi proposed a way to compare cyclic colormaps on a paper on 2015. It consists of a spiral ramp with an undulation. In polar coordinates it reads
with \(A\) the amplitude of the oscilation, \(\rho\) the normalized radius in [0, 1], \(p\) a positive number, and \(n\) the number of cycles.
And the following function creates the grid in Python
def circle_sine_ramp(r_max=1, r_min=0.3, amp=np.pi/5, cycles=50, power=2, nr=50, ntheta=1025): r, t = np.mgrid[r_min:r_max:nr*1j, 0:2*np.pi:ntheta*1j] r_norm = (r - r_min)/(r_max - r_min) vals = amp * r_norm**power * np.sin(cycles*t) + t vals = np.mod(vals, 2*np.pi) return t, r, vals
The following is the result
Colorblindness test
t, r, vals = circle_sine_ramp(cycles=0) cmaps = ["hsv", "cmocean_phase", "hue_L60", "erdc_iceFire", "nic_Edge", "colorwheel", "cyclic_mrybm", "cyclic_mygbm"] severity = [0, 50, 50, 50] for colormap in cmaps: data = np.loadtxt(colormap + ".txt") fig = plt.figure() for cont in range(4): cvd_space = {"name": "sRGB1+CVD", "cvd_type": cvd_type[cont], "severity": severity[cont]} data2 = cspace_convert(data, cvd_space, "sRGB1") data2 = np.clip(data2, 0, 1) cmap = LinearSegmentedColormap.from_list('my_colormap', data2) ax = plt.subplot(2, 2, 1 + cont, projection="polar") ax.pcolormesh(t, r, vals, cmap=cmap) ax.set_xticks([]) ax.set_yticks([]) plt.suptitle(colormap) plt.tight_layout() plt.savefig(colormap + ".png", dpi=300)
Randomly generated cyclic colormaps
What if we generate some random colormaps that are cyclic? How would they look like?
Following are the snippet and resulting colormaps.
from __future__ import division, print_function import numpy as np from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from matplotlib.colors import LinearSegmentedColormap # Next line to silence pyflakes. This import is needed. Axes3D plt.close("all") fig = plt.figure() fig2 = plt.figure() nx = 4 ny = 4 azimuths = np.arange(0, 361, 1) zeniths = np.arange(30, 70, 1) values = azimuths * np.ones((30, 361)) for cont in range(nx * ny): np.random.seed(seed=cont) rad = np.random.uniform(0.1, 0.5) center = np.random.uniform(rad, 1 - rad, size=(3, 1)) mat = np.random.rand(3, 3) rot_mat, _ = np.linalg.qr(mat) t = np.linspace(0, 2*np.pi, 256) x = rad*np.cos(t) y = rad*np.sin(t) z = 0.0*np.cos(t) X = np.vstack((x, y, z)) X = rot_mat.dot(X) + center ax = fig.add_subplot(ny, nx, 1 + cont, projection='polar') cmap = LinearSegmentedColormap.from_list('my_colormap', X.T) ax.pcolormesh(azimuths*np.pi/180.0, zeniths, values, cmap=cmap) ax.set_xticks([]) ax.set_yticks([]) ax2 = fig2.add_subplot(ny, nx, 1 + cont, projection='3d') ax2.plot(X[0, :], X[1, :], X[2, :]) ax2.set_xlim(0, 1) ax2.set_ylim(0, 1) ax2.set_zlim(0, 1) ax2.view_init(30, -60) ax2.set_xticks([0, 0.5, 1.0]) ax2.set_yticks([0, 0.5, 1.0]) ax2.set_zticks([0, 0.5, 1.0]) ax2.set_xticklabels([]) ax2.set_yticklabels([]) ax2.set_zticklabels([]) fig.savefig("random_cmaps.png", dpi=300, transparent=True) fig2.savefig("random_cmaps_traj.svg", transparent=True)
A good idea would be to take these colormaps and optimize some perceptual parameters such as lightness to get some usable ones.
Conclusions
I probably would use phase
, colorwheel
, or mrybm
in the
future.
References
Peter Kovesi. Good Colour Maps: How to Design Them. arXiv:1509.03700 [cs.GR] 2015
Comments
Comments powered by Disqus