# Numerical methods challenge: Day 23

During October (2017) I will write a program per day for some well-known numerical methods in both Python and Julia. It is intended to be an exercise then don't expect the code to be good enough for real use. Also, I should mention that I have almost no experience with Julia, so it probably won't be idiomatic Julia but more Python-like Julia.

## Ritz method

Today we have the Ritz method to solve the equation:

\begin{equation*} \frac{d^2 u}{dx^2} = f(x) \end{equation*}

with

\begin{equation*} u(0) = u(1) = 0 \end{equation*}

The method consist in forming a functional that is equivalent to the differential equation, propose an approximation as a linear combination of a set of basis functions and find the best set of coefficients for that combination. That best solution is found minimizing the functional.

The functional for this differential equation is

\begin{equation*} \Pi[u] = -\int_{0}^{1} \left(\frac{d u}{d x}\right)^2 dx -\int_{0}^{1} u f(x) dx \end{equation*}

In this case, we are using the approximation

\begin{equation*} \hat{u}(x) = x (1 - x)\sum_{n=0}^{N} c_n x^n\, , \end{equation*}

where we picked the factor $x (1 - x)$ to enforce that the basis functions satisfy the boundary conditions. The approximated functional reads

\begin{align*} \Pi[\hat{u}] = -\sum_{n=0}^{N} \sum_{m=0}^{N} c_n c_m \left[\frac{2 + 2m + 2n + 2mn}{(n + m + 1)(n + m + 2)(n + m +3)}\right] -\\ \sum_{n=0}^{N} c_n\int_{0}^{1} x^{n + 1}(1 - x) f(x) dx \end{align*}

where, in general, we will need to perform numerical integration for the second term.

Minimizing the functional

\begin{equation*} \frac{\partial \Pi[\hat{u}]}{\partial c_m} = 0\, , \end{equation*}

we obtain the system of equations

\begin{equation*} [K]\{\mathbf{c}\} = \{\mathbf{b}\} \end{equation*}

with

\begin{equation*} K_{mn} = \frac{2 + 2m + 2n + 2mn}{(n + m + 1)(n + m + 2)(n + m +3)} \end{equation*}

and

\begin{equation*} b_m = -\int_{0}^{1} x^{m + 1}(1 - x) f(x) dx\, . \end{equation*}

We will test the implementation with the function $f(x) = x^3$, that leads to the solution

\begin{equation*} u(x) = \frac{x (x^4 - 1)}{20} \end{equation*}

Following are the codes.

### Python

from __future__ import division, print_function
import numpy as np
from scipy.linalg import solve
import matplotlib.pyplot as plt

def ritz(N, source):
stiff_mat = np.zeros((N, N))
rhs = np.zeros((N))
for row in range(N):
for col in range(N):
numer = (2 + 2*row + 2*col + 2*row*col)
denom = (row + col + 1) * (row + col + 2) * (row + col + 3)
stiff_mat[row, col] = numer/denom
fun = lambda x: x**(row + 1)*(1 - x)*source(x)
rhs[row], _ = quad(fun, 0, 1)
return stiff_mat, rhs

N = 2
source = lambda x: x**3
mat, rhs = ritz(N, source)
c = solve(mat, -rhs)
x = np.linspace(0, 1, 100)
y = np.zeros_like(x)
for cont in range(N):
y += c[cont]*x**(cont + 1)*(1 - x)

#%% Plotting
plt.figure(figsize=(4, 3))
plt.plot(x, y)
plt.plot(x, x*(x**4 - 1)/20, linestyle="dashed")
plt.xlabel(r"$x$")
plt.ylabel(r"$y$")
plt.legend(["Ritz solution", "Exact solution"])
plt.tight_layout()
plt.show()


### Julia

using PyPlot

function ritz(N, source)
stiff_mat = zeros(N, N)
rhs = zeros(N)
for row in 0:N-1
for col in 0:N-1
numer = (2 + 2*row + 2*col + 2*row*col)
denom = (row + col + 1) * (row + col + 2) * (row + col + 3)
stiff_mat[row + 1, col + 1] = numer/denom
end
fun(x) = x^(row + 1)*(1 - x)*source(x)
rhs[row + 1], _  = quadgk(fun, 0, 1)
end
return stiff_mat, rhs
end

N = 2
source(x) = x^3
mat, rhs = ritz(N, source)
c = -mat\rhs
x = linspace(0, 1, 100)
y = zeros(x)
for cont in 0:N - 1
y += c[cont + 1]*x.^(cont + 1).*(1 - x)
end

#%% Plotting
figure(figsize=(4, 3))
plot(x, y)
plot(x, x.*(x.^4 - 1)/20, linestyle="dashed")
xlabel(L"$x$")
ylabel(L"$y$")
legend(["Ritz solution", "Exact solution"])
tight_layout()
show()


Both have (almost) the same result, as follows And if we consider 3 terms in the expansion, we get ### Comparison Python/Julia

Regarding number of lines we have: 38 in Python and 38 in Julia. The comparison in execution time is done with %timeit magic command in IPython and @benchmark in Julia.

For Python:

%%timeit
mat, rhs = ritz(5, source)
c = solve(mat, -rhs)


with result

1000 loops, best of 3: 228 µs per loop


For Julia:

function bench()
mat, rhs = ritz(N, source)
c = -mat\rhs
end
@benchmark bench()


with result

BenchmarkTools.Trial:
memory estimate:  6.56 KiB
allocs estimate:  340
--------------
minimum time:     13.527 μs (0.00% GC)
median time:      15.927 μs (0.00% GC)
mean time:        17.133 μs (4.50% GC)
maximum time:     2.807 ms (97.36% GC)
--------------
samples:          10000
evals/sample:     1


In this case, we can say that the Python code is roughly 14 times slower than Julia.