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A B S T R A C T
Urban morphology has long been recognized as a factor shaping human mobility, yet comparative and
formal classifications of urban form across metropolitan areas remain limited. Building on theoretical
principles of urban structure and advances in unsupervised learning, we systematically classified
the built environment of nine U.S. metropolitan areas using structural indicators such as density,
connectivity, and spatial configuration. The resulting morphological types were linked to mobility
patterns through descriptive statistics, marginal effects estimation, and post hoc statistical testing. Here
we show that distinct urban forms are systematically associated with different mobility behaviors, such
as reticular morphologies being linked to significantly higher public transport use (marginal effect =
0.49) and reduced car dependence (–0.41), while organic forms are associated with increased car usage
(0.44), and substantial declines in public transport (–0.47) and active mobility (–0.30). These effects
are statistically robust (𝑝 < 10−19), highlighting that the spatial configuration of urban areas plays a
fundamental role in shaping transportation choices. Our findings extend previous work by offering a
reproducible framework for classifying urban form and demonstrate the added value of morphological
analysis in comparative urban research. These results suggest that urban form should be treated as a
key variable in mobility planning and provide empirical support for incorporating spatial typologies
into sustainable urban policy design.

1 Introduction

The physical structure of cities exerts a determining influence on the daily
lives of their inhabitants, shaping the way they move, access services, and
participate in urban dynamics. In this context, urban morphology stands as
a crucial factor in the organization of mobility. This morphology not only
defines the accessibility and connectivity of a territory but also conditions
the modal share of trips and, consequently, equitable access to the city’s
work, educational, and social opportunities (Geurs and Wee, 2004).

Historically, urban and transport policies have tended to address mo-
bility from a predominantly functionalist perspective, focused on the op-
erational efficiency of transport systems. However, this approach has often
underestimated how urban design can either foster or restrict certain modes
of travel. Faced with pressing contemporary challenges such as vehicular
congestion, spatial fragmentation, inequity in access, and the environmental
impact of transport, understanding the relationship between urban morphol-
ogy and mobility is crucial. Prior studies have demonstrated that some urban
forms promote active travel and public transit, whereas others foster car
dependency (Ewing and Cervero, 2010).

In this context, the present study contributes to understanding how the
morphological configuration of street networks influences urban mobility
patterns. It examines the structural attributes of road systems as captured
by topological and spatial indicators (Bamakan, Nurgaliev and Qu, 2019;
Cardillo, Scellato, Latora and Porta, 2006), and explores the extent to
which variations in network form are associated with differences in modal
share across U.S. cities, providing empirical insights that may support
more integrated approaches to urban and transport planning. Through a
comparative approach, it aims to provide empirical evidence that can guide
the design of more integrated urban and transport planning policies, in order
to promote more equitable, sustainable, and efficient mobility systems.
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2 Urban Morphology and Spatial Structure

Urban morphology is a multifaceted concept that has been interpreted in
various ways across disciplines such as geography, architecture, planning,
and urban design (Moudon, 1997; Marshall, 2004). Some approaches
emphasize the built fabric—including plots, buildings, and blocks (Conzen,
1960)—while others focus on the configurational logic of space and the
movement it generates (Hillier and Hanson, 1984).

In this study, we adopt a network-based understanding of urban mor-
phology, where the structure and geometry of the street network are treated
as a proxy for the underlying form of the city (Porta, Crucitti and Latora,
2006; Boeing, 2019). We acknowledge that this is only one of many valid
ways to study urban form and do not claim conceptual primacy. Rather, we
recognize that form is multidimensional, and that our approach captures one
of its structural expressions—specifically, the topological and geometric
configuration of urban streets as they relate to patterns of movement and
accessibility.

To characterize the spatial structure of cities, we draw on the principles
of urban morphology, which offer a framework for describing and mea-
suring the physical configuration of the built environment. This approach
emphasizes the role of street networks as a key component in shaping urban
form, since their structure often reflects identifiable patterns such as grid-
like, organic, or cul-de-sac configurations.

Through the use of quantitative indicators, it is possible to capture both
the topological and geometric dimensions of these patterns. Topological
variables reflect the underlying structure of connectivity and potential
accessibility within the street network, while geometric variables capture
spatial properties, including street length, orientation, and the configuration
of intersections and blocks (Barrington-Leigh and Millard-Ball, 2019a,b;
Jiang, 2007). Together, these dimensions provide a robust analytical basis
for detecting structural regularities and interpreting the spatial organization
of the urban fabric in the cases analyzed.

2.1 Characterization of Urban Morphology: Fundamental
Metrics and Dimensions

The description of an urban network, especially when approached from
graph theory, generates a wide set of topological and spatial variables.
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Given the considerable number of these variables and their frequent in-
tercorrelation, their direct management can be complex. To address this,
the variables are grouped into a limited number of relevant dimensions
that capture key aspects of urban morphology. This conceptual grouping
helps consolidate numerous individual metrics into a more manageable
set of descriptors with clear interpretative value. Although four principal
dimensions are proposed based on logical associations among urban prop-
erties, this structure is not rigid. Depending on the complexity and scale
of the dataset (e.g., in larger or more heterogeneous cities), additional or
slightly different groupings may be necessary. These groupings maintain
coherence with the original variables and preserve the overall interpreta-
tive framework, allowing for flexibility and nuance. From this theoretical
organization, the following main dimensions are identified: labelsep
• Connectivity: Evaluates the degree of interconnection between nodes

(intersections) and segments (streets) of the network.
• Geometry: Defines the physical properties of road segments and blocks,

such as the average length of streets, their sinuosity, and the regularity
of block shapes.

• Density: Measures the concentration of road elements per unit of area.
• Angular Characteristics: Describes the angles formed by road seg-

ments at intersections.
Table 1 presents the seventeen metrics organized according to the

previously defined categories. These metrics provide a quantification of
both topological and spatial characteristics of urban street networks. The
selection prioritizes not only analytical robustness, but also the capacity
of these metrics to be interpreted in morphological terms, allowing for a
clearer understanding of structural differences across urban contexts.

Table 1: Urban street network metrics grouped by category.

Connectivity Dead End
Ratio

Share of segments
terminating in dead
ends.

0 to 1 higher
means less
through
connectivity.

L-junction 1 Proportion of nodes
with 2 connecting
streets.

0 to 1 higher
values reflecting
lower connectivity.

T-junction 1 Proportion of nodes
with 3 connecting
streets.

0 to 1 and
commonly found
in irregular
layouts.

X-junction 1 Proportion of nodes
with 4 connecting
streets.

0 to 1 higher
values indicate
greater
connectivity.

Streets per
Node 1

Average number of
streets converging
at a node.

Low (dead ends)
to high (junctions)
complexity.

Avg
Degree 1

Average node
degree, measuring
number
of connections.

0 to 1

Geometry Circuity 1 Average ratio of
shortest-path length
to Euclidean
distance.

From near 1
(direct) to higher
values (indirect).

Avg Street
Length 1

Average length of
continuous streets
in the network.

Short to long
streets depending
on urban form.

Category Metric Definition Value remark

Continued on next page

Table 1: Urban street network metrics grouped by category. (Continued)

Density Edge
Density 1

Length of edges per
unit area.

Low to high
density depending
on morphology.

Street
Density 1

Number of streets
per unit area in the
spatial boundary.

Sparse to dense
street patterns
observable.

Node
Density 1

Share of nodes
(intersections) per
unit area.

0 to 1

Intersection
Density 1

Number of
intersections per
km² within the
network area.

Low to high
intersection
frequency.

Segment
Density 1

Share of street
segments per km² in
the area.

0 to 1

Angular
Properties

Mean
Angle

Average angle
formed at
intersections
in the network.

Ranges from acute
to right to obtuse
angles.

Angle
CV

Coefficient of
variation of
intersection angles.

Low to high
angular variability
in layout.

Orthogonal
Proportion

Percentage of
intersections
forming
near 90º angles.

0 to 1

Orientation
Entropy 1

Normalized
measuring angular
uncertainty.

0 to 1 higher
values indicate
greater directional
diversity.

Category Metric Definition Value remark

Beyond the dimensions addressed in this study, existing literature on
urban network analysis has emphasized the role of centrality measures as
part of the methods used to characterize the internal structure of street
systems. These metrics arise from the topological perspective inherent to
graph theory and allow for the characterization of the relative position
of nodes and edges within a system, beyond their physical location or
immediate connectivity.

From this perspective, centrality metrics provide an additional layer of
analysis that enables the examination of how accessibility and connectivity
are distributed across different street fabrics. When interpreted through
a functional lens, these measures help identify not only local connection
patterns but also global articulation dynamics within the network. Degree
centrality (Freeman, 1978), by estimating the number of direct connections
each node has relative to the total, offers a first approximation of its level
of integration; building on this, closeness centrality (Musiał, Kazienko
and Bródka, 2009; Wasserman and Faust, 1994) broadens the scope by
considering the average distances between nodes, allowing for the identifi-
cation of strategic points with greater potential access to the overall system.
Complementarily, betweenness centrality as elaborated by Freeman (1978),
introduces a critical dimension by revealing which nodes tend to lie along
the shortest paths between other pairs, highlighting their role as articulators
of general flow. A similar logic can be applied to the network’s segments
through edge betweenness centrality (Lu and Zhang, 2013), which helps
identify links with a high structural weight in overall connectivity. Although
these metrics were not part of the empirical analysis developed in this study,
they represent a complementary analytical dimension that can enrich the
study of spatial configurations and the structural understanding of urban
networks.

1Internals Reference – OSMnx 1.6.0 documentation: https://osmnx.

readthedocs.io/en/stable/internals-reference.html#osmnx-stats-module.
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2.2 Typologies of Urban Patterns
The systematic analysis of the morphological metrics and dimensions
described above leads to the identification and classification of different
typologies of urban patterns. These represent spatial configurations that,
although they may present local variations and degrees of mixing in urban
reality, share distinctive structural characteristics. A clear understanding of
urban typologies is fundamental for analyzing the morphology of cities.
In this regard, Southworth and Ben-Joseph (1995) offers a comprehensive
historical overview of the evolution of street patterns. Building on this
foundation, the existing literature (Marshall, 2004; Asami, Kubat and Istek,
2001) has identified several predominant typologies, among which the
following stand out as particularly relevant to this study:

2.2.1 Gridiron (Reticular)

Characterized by a predominantly orthogonal street pattern where streets
intersect at right angles, generating regularly shaped blocks. This structure
tends to offer high connectivity and permeability, facilitating orientation
and efficient distribution.

2.2.2 Suburban (Cul-de-sac)

Presents a hierarchical structure, frequently with a dendritic design. It is
distinguished by a high percentage of dead-end streets (cul-de-sacs) that
feed into collector roads and, finally, main arteries.

2.2.3 Organic (or Irregular)

Often arises from more spontaneous urban growth, adapted to topography,
or historically developed without a unified geometric plan. It is defined by
streets with non-uniform layouts, variable widths, and blocks of diverse
shapes and sizes.

2.2.4 Hybrid

In reality, many urban areas do not strictly conform to a single typology but
instead present a combination of characteristics from the aforementioned
patterns. These hybrid patterns can arise from the superposition of different
planning phases, adaptation to specific geographical contexts, or the organic
evolution of previously planned areas.

To illustrate the morphological diversity discussed above, Fig. 1
presents representative examples of the four canonical street network
patterns. These include the grid layout of Midtown Manhattan (New York
City), the dendritic cul-de-sac structure of Mission Viejo (California), the
organic fabric of Alfama (Lisbon), and the hybrid configuration observed
in Canberra (Australia).

3 Classification and Treatment of Urban Mobility

In order to analyze the relationship between urban morphology and mobility
patterns, data on street space usage are collected and classified based on
information provided by the U.S. Census Bureau (2020). This information
is organized following the ABC of Mobility framework Prieto-Curiel and
Ospina (2024), which classifies travel modes into three categories based
on their function and means of transport. Active mobility includes non-
motorized forms such as walking and cycling, public mobility comprises
trips made using shared or collective transport systems, and private mobility
refers to the use of individual motorized vehicles. This classification serves
to structure the analysis of modal distribution in a clear and comparable
way. Based on this classification, mobility patterns are examined from a
dual perspective. On the one hand, the disaggregated approach makes it
possible to assess the specific contribution of each transport mode and its
potential correlation with particular morphological attributes. On the other
hand, the aggregated analysis provides a general overview of the modal
composition of each urban unit, allowing for systematic comparisons across
different spatial contexts. This methodological approach not only enables
the characterization of transport mode distribution but also facilitates the
exploration of potential associations between the built environment and
everyday mobility practices.

Grid Cul-De-Sac

Organic Hybrid

Figure 1: Illustrative cases of canonical urban street typologies.
(Produced by the author using OpenStreetMap data).

4 Methodology for Theoretical Classification and Clustering
of Urban Patterns

To conduct the morphological analysis of the street networks in the selected
cities, the urban territory was divided into administrative units defined by
the Census Bureau, known as census tracts. This territorial segmentation
enables a precise and consistent characterization of urban morphology,
facilitating the integration of topological and spatial properties with com-
plementary data such as mobility indicators available at the tract level.
This approach enables systematic comparisons across urban areas while
preserving the granularity needed to capture internal heterogeneity.

Urban morphology are analyzed based on the variables previously
defined and summarized in Table 1, which group key spatial and topological
characteristics relevant to describing street networks. Building on this
foundation, a systematic and replicable classification method is applied to
quantify the degree of correspondence between each urban unit and the the-
oretical profiles of urban patterns established in the literature (Section 2.2).
This method employs a Multi-Attribute Decision Making (MADM) (Tri-
antaphyllou, 2000) framework that assigns weighted scores and penalties
according to how closely the observed morphological attributes align with
the characteristic values of each pattern. Within this framework, three types
of intervals are identified. The optimal interval includes values that are
highly characteristic and representative of a specific pattern, the moderate
interval comprises values compatible with the pattern but less distinctive or
potentially overlapping with others, and the critical or penalizing interval
encompasses values that significantly contradict the defining features of the
pattern. For example, a very high proportion of dead-end streets is con-
sidered critical when evaluating the Gridiron pattern, triggering a penalty
within the scoring scheme. To quantify the correspondence between an
urban area and each profile, a weighted scoring mechanism with penalties is
applied. Let 𝑑𝑖 denote the value of dimension 𝑖, and 𝑤𝑖 the weight assigned
based on its relevance to the pattern. The partial score for each dimension
is determined by the interval in which 𝑑𝑖 falls.

𝑠𝑖 =

⎧

⎪

⎨

⎪

⎩

+𝑆𝑜 ×𝑤𝑖, if 𝑑𝑖 ∈ optimal interval
+𝑆𝑚 ×𝑤𝑖, if 𝑑𝑖 ∈ moderate interval
−𝑃𝑐 ×𝑤𝑖, if 𝑑𝑖 ∈ critical interval

where 𝑆𝑜, 𝑆𝑚, and 𝑃𝑐 are positive coefficients that weight the contribu-
tion or penalty accordingly, with 𝑆𝑜 > 𝑆𝑚 ≥ 0. The total score for a given
urban area and a specific pattern is obtained by summing the partial scores:
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𝑆total =
∑

𝑖
𝑠𝑖

This approach enables a quantitative and replicable assessment of mor-
phological similarity between observed urban areas and theoretical patterns,
facilitating a systematic classification based on selected morphological
properties. As previously indicated in Table 1, this study employs a set of
topological and spatial properties to characterize and classify urban mor-
phological patterns. The definition of reference values and corresponding
ranges for each metric is not arbitrary, but rather grounded in a detailed
review of previous studies on urban street networks from various analytical
perspectives. Regarding connectivity, multiple metrics have been explored
to capture the structural integration of networks. Research such as that by
Wu, Wang, Wang and Kraak (2024); Barrington-Leigh and Millard-Ball
(2019a) introduces indicators like the Street-Network Disconnectedness
Index (SNDi), a graph-theoretic measure that quantifies structural discon-
nectedness using a global dataset encompassing over 46 million kilometers
of streets. These metrics incorporate variables such as the proportion of
dead-end streets, the continuity of links according to their hierarchical clas-
sification, and the presence of redundant connections. Complementarily,
the work of Jiang (2007), which analyzes networks from 40 cities in the
United States and abroad, shows that urban configurations tend to exhibit
properties characteristic of small-world and scale-free systems—both in
terms of street length distribution and connectivity degree—thus providing
a robust empirical basis for establishing reference intervals for the topo-
logical variables used. Along similar lines, the study by Lowry and Lowry
(2014) compares 18 morphological metrics across over 500 neighborhoods
in Salt Lake County, identifying which ones more effectively differentiate
between historical urban development types and showing that, despite smart
growth policy efforts, patterns of sprawling urbanization persist.

With respect to density, studies such as Cardillo et al. (2006) and
again Jiang (2007) have examined the concentration of street elements
through weighted spatial graph representations, comparing real networks
with synthetic ideal structures using methodologies such as Minimum
Spanning Trees (MST) and Greedy Triangulations (GT). These approaches
have demonstrated the effectiveness of these measures in capturing the
structural complexity of real urban contexts. Additionally, to describe geo-
metric and angular features of networks, studies such as Xie and Levinson
(2005) and Boeing (2019) have analyzed indicators like orientation en-
tropy, connection patterns (ringness, treeness, beltness, among others), and
directional continuity. These metrics have been applied to both idealized
configurations (e.g., 90°, 45°, and 30° grids) and empirical data from 100
cities across different continents, enabling the evaluation of geometric order
and regularity in street orientations.

The properties selected for analysis were adapted from the ranges and
threshold values reported in these studies. This information was integrated
into the proposed classification framework, ensuring both conceptual con-
sistency with the literature and empirical viability for implementation, thus
enabling a structured and reproducible assessment of the correspondence
between observed urban forms and the theoretical patterns considered.

4.1 Pattern Classification and Identification of Hybrid Forms
The classification of an urban area is determined by assigning it to the
pattern typology for which it achieves the highest aggregate score, pro-
vided that this score exceeds a minimum threshold ensuring a meaningful
correspondence. For example, a city is categorized as Gridiron if the score
associated with that pattern is the highest among all evaluations and reaches
a predefined confidence level.

Hybrid forms are identified in cases where an urban area obtains
high scores in two or more distinct typologies, indicating a significant
combination of characteristics from each pattern. This can be observed,
for instance, in areas exhibiting prominent Gridiron traits blended with
elements typical of Organic growth, often resulting from adaptations to
topography or historical layering. A hybrid form is also recognized when no
single score clearly dominates, yet the specific distribution of values across
morphological dimensions reveals a discernible mixed configuration—for

example, a predominantly orthogonal layout that includes a substantial
number of dead-end streets, a feature typical of Suburban patterns in recent
developments. This allows for a more nuanced classification that moves
beyond mutually exclusive categories and more accurately reflects the
complexity and diversity of urban fabric.

4.2 Cluster-Based Pattern and Subpattern Classification
The application of Principal Component Analysis (PCA) (Jolliffe, 2002) to
the initial set of topological and spatial variables enabled the reduction of
dimensionality, identifying a limited number of latent dimensions that cap-
ture most of the variability observed in urban morphology. To determine the
appropriate number of components, we analyzed their explained variance
and examined the exponential decrease in reconstruction error, adopting a
95% explained variance threshold. This approach ensured a minimal loss
of information while avoiding the inclusion of irrelevant components in the
subsequent analysis.

Although Table 1 defined conceptual groups to organize morphologi-
cal properties, the PCA analysis shows that the empirical expression of these
categories may vary depending on urban scale and internal heterogeneity.
Nevertheless, the extracted dimensions tend to preserve the structural logic
of the theoretical classification, suggesting a robust correspondence be-
tween conceptual patterns and actual urban configurations, without imply-
ing a rigid segmentation. Based on these dimensions, clustering techniques
were applied to identify predominant morphological patterns, selecting
the optimal number of clusters using metrics such as the silhouette score.
Although the resulting groupings reflect configurations consistent with the
theoretical framework, they should be understood as flexible structures in
complex urban environments such as those with large territorial extensions
or multilevel developments. Peripheral subgroups may emerge that, despite
deviating from the cluster centroid, retain fundamental structural properties
that justify their classification.

5 Results and Comparative Analysis

5.1 Morphological Pattern Characterization in Selected Cities
A sample of nine U.S. cities with diverse morphological configurations
was defined, selected based on spatial variation, geographic coverage, and
data availability from the United States Census. In each case, census tracts
were classified according to their corresponding theoretical morphological
pattern, and the resulting groupings were analyzed using clustering tech-
niques. The aim was to explore the correspondence between the theoretical
typologies and the observed configurations in each city. The results not
only replicate the theoretical patterns in several cases, but also reveal the
existence of subpatterns within each typology. These subgroups represent
internal modulations that reflect variations within the main categories
previously defined systematically in Section 2.1. Each subgroup is labeled
with a positive (+) or negative (−) sign, indicating an upward or downward
deviation, respectively, from the dominant properties of its category.

The classification of these subpatterns enables a more precise inter-
pretation of the intra-typological differences observed across the analyzed
cities. As shown in Table 2, a synthesis of these subcategories is presented,
along with the general properties associated with each, fully aligned with
the previously defined morphological dimensions.

Table 2: Summary of morphological subgroups identified through clustering.

Density± Variations in properties related to urban density
Intersection± Changes in features associated with street

intersections
Mean± Modifications in average network metrics such

as segment density or circuity

Subgroup General Description

Continued on next page
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Table 2: Summary of morphological subgroups identified through clustering.
(Continued)

Street± Alterations in characteristics linked to main
streets and their connectivity

Std± Differences in geometric dispersion or
variability of network angles

Subgroup General Description

The cluster analysis reveals the presence of subpatterns within each
general morphological category, highlighting considerable internal vari-
ability shaped by the diversity of the cities studied. Nonetheless, a strong
consistency emerges, as most identified subgroups closely align with the
main morphological categories previously defined. To illustrate this, Ta-
ble 3 presents the nine cities analyzed, detailing their theoretical morpho-
logical classifications alongside the clustering results and the subpatterns
identified.

Table 3: Comparison between theoretical morphological patterns and sub–
patterns obtained by clustering.

Boston Gridiron 44%
Organic 18%
Hybrid 14%
Cul De Sac 24%

Gridiron 12.1%
Street− 35.4%
Street+ 0.3%
Organic 29.2%
Street+ 7.9%
Cul De Sac 15.2%

Cary Town Gridiron 1%
Organic 28%
Hybrid 17%
Cul De Sac 54%

Gridiron 1.3%
Cul De Sac 27.6%
Std+ 68.4%
Std− 2.6%

Chandler Gridiron 2%
Organic 47%
Hybrid 10%
Cul De Sac 41%

Organic 60.8%
Cul De Sac 37.4%
Street+ 1.9%

Charleston Gridiron 23%
Organic 39%
Hybrid 8%
Cul De Sac 30%

Gridiron 11.5%
Density− 9.8%
Density+ 4.9%
Density− 11.5%
Organic 29.5%
Density− 24.6%
Cul De Sac 8.2%

Fort Collins Gridiron 12%
Organic 31%
Hybrid 13%
Cul De Sac 44%

Gridiron 7.7%
Organic 21.2%
Street+ 5.8%
Cul De Sac 13.5%
Street+ 26.9%
Street− 25.0%

Peachtree Organic 13%
Hybrid 6%
Cul De Sac 81%

Organic 12.5%
Cul De Sac 18.8%
Mean+ 43.8%
Mean− 25.0%

Philadelphia Gridiron 59%
Organic 16%
Hybrid 11%
Cul De Sac 14%

Gridiron 14.2%
Mean− 41.3%
Organic 44.5%

Salt Lake Gridiron 54%
Organic 17%
Hybrid 8%
Cul De Sac 21%

Gridiron 43.1%
Intersection− 25.0%
Cul De Sac 31.9%

City Primary Pattern Clustering Sub-pattern

Continued on next page

Table 3: Comparison between theoretical morphological patterns and sub–
patterns obtained by clustering. (Continued)

Santa Fe Gridiron 5%
Organic 43%
Hybrid 12%
Cul De Sac 40%

Organic 26.2%
Density− 19.1%
Density+ 2.4%
Cul De Sac 19.1%
Density+ 16.7%
Density− 16.7%

City Primary Pattern Clustering Sub-pattern

Figure 2 presents selected examples of morphological categories and
sub-patterns in cities like Sant Lake City, Boston, and Chandler, which
show substantial internal variation. These cases exemplify how different
urban contexts contribute to the morphological diversity captured by the
clustering results, without delving into historical or social specifics.

5.2 The Relationship Between Urban Structure and Mobility
Patterns

Using data from the census on the relative shares of active, public, and pri-
vate transportation modes within each urban unit, an analysis was conducted
by grouping observations according to their predominant morphological
pattern. This approach enabled the identification of general mobility trends
associated with different spatial configurations. Figure 3 presents density
plots illustrating how modal distributions vary across these morphological
patterns.

The analysis of the median behavior and dispersion for each transporta-
tion mode reveals systematic changes that shape distinctive mobility profiles
depending on urban morphology. Specifically, grid-like morphologies tend
to be associated with higher shares of active and public transportation.
In contrast, organic and cul-de-sac patterns—characterized by lower con-
nectivity and a prevalence of dead-end streets—exhibit greater reliance
on private vehicles. This tendency is statistically reflected in consistently
lower medians for active and public transport modes within these spatial
configurations.

5.2.1 Marginal Effects of Urban Morphology on Modal Mobility

To show how different spatial configurations are associated with variations
in the use of specific modes of transportation, we analyzed the relation-
ship between urban morphology and modal usage through the estimated
marginal effects. Figure 4 presents a heatmap displaying the normalized
coefficients associated with each urban pattern, allowing for a visual in-
terpretation of how certain morphological forms are linked to positive or
negative deviations in the propensity for active, public, or private mobility
compared to the overall average. The estimated marginal effects reveal
significant contrasts among the various morphological configurations. The
grid-like morphology, for instance, is associated with a higher propensity
for public transport use (0.49) and a lower tendency toward private vehicle
use (−0.41), suggesting an urban environment conducive to sustainable
mobility dynamics. In contrast, the organic pattern exhibits a strong positive
effect on car usage (0.44), along with negative effects on public transport
(−0.47) and active mobility (−0.30), indicating a lower affinity for alterna-
tive modes of transportation in this type of urban fabric.

5.2.2 A Post Hoc Analysis

To more precisely assess the differences between street configurations in
relation to various types of mobility, a post hoc analysis was conducted
based on pairwise comparisons between patterns. The Kruskal–Wallis
test Kruskal and Wallis (1952) was used as a global test, followed by
Mann–Whitney tests Mann and Whitney (1947) to identify which specific
contrasts were statistically significant. To estimate the magnitude of these
differences, effect sizes were calculated and expressed as 𝜂. This metric
allows for interpreting the practical relevance of the observed differences
beyond their statistical significance. Table 4 summarizes the results for each
combination of street pattern and mobility type, including the U statistic,
associated 𝑝-value, and effect size 𝜂.
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(a1) Boston, MA (a2) Boston Clustering

(b1) Salt Lake City, UT (b2) Salt Lake City Clustering

(c1) Chandler, AZ (c2) Chandler Clustering

Organic Street+ Cul-de-sac Street+ Hybrid Gridiron Street+ Street−

Figure 2: Morphological classification of street networks. Top row (a1–c1): primary typologies. Bottom row (a2–c2): sub-patterns
identified within each category via unsupervised learning.
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Organic
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Cul-de-sac
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Modal Share

Gridiron

0.65
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Distribution of Mobility Shares by Urban Typology

Active (A) Public (B) Private (C)

Figure 3: Ridgeline plot showing the distribution of modal shares (active, public, and private) across urban morphological patterns.
Each ridge represents a density estimate for a specific typology.
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Figure 4: Heatmap of the marginal effects of mobility modes
across urban layout patterns.

The post hoc analysis reveals a consistent relationship between ur-
ban morphology and mobility patterns, with each typology promoting or
restricting different modes of travel. The gridiron configuration stands
out for its sustained support of active mobility and public transport use,
showing significant mean differences compared to the organic and cul-de-
sac patterns—particularly in public transport mobility (𝜂 = 0.50). It also

exhibits the lowest relative use of private automobiles. In contrast, cul-
de-sac layout is associated with a high reliance on private vehicles and
significant negative effects on active and public mobility, attributable to its
limited connectivity. The mean difference of +0.168 compared to gridiron
in private mobility (𝑟 = 0.40) reinforces this trend.

This tendency is even more pronounced in the organic pattern, which,
due to its geometric complexity, shows the highest level of car use. The
mean difference with respect to gridiron reaches +0.220 (𝑟 = 0.50), the
strongest effect observed in the analysis, accompanied by the poorest per-
formance in both active and public mobility. Finally, the hybrid morphology
displays an intermediate behavior across all modes of mobility. The effect
sizes relative to gridiron are smaller (𝜂 between 0.13 and 0.27), suggesting
that it neither optimizes any particular mode nor severely penalizes them,
consistent with its mixed morphological structure.

5.3 Policy Implications
This study highlights the relevance of street network morphology as a key
structural factor shaping mobility behavior, beyond traditional socioeco-
nomic explanations. By revealing strong associations between street sub-
patterns and mode share, the findings support the integration of morpho-
logical indicators into urban and transport policy design. Such integration
can enable more spatially nuanced, evidence-based planning, with potential
applications in accessibility metrics, transport equity assessments, and
mobility-oriented urban development strategies, such as:

• Targeted infrastructure investment for active mobility. Cities
can use morphological classifications to identify areas where the
built form already supports walking and cycling. Grid-like or hy-
brid patterns, characterized by high connectivity and intersection
density, offer fertile ground for reinforcing active mobility through
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Table 4
Post hoc analysis results for mobility patterns across urban morphological types.

Mobility Type Pattern 1 Pattern 2 n1 n2 U statistic p-value Mean Diff Median Diff 𝜂

A

Gridiron Organic 590 308 124255 1.24 × 10−19 0.087 0.049 0.302

Cul-de-sac Gridiron 344 590 69984.5 2.12 × 10−15 −0.066 −0.048 0.259

Gridiron Hybrid 590 167 58648.5 1.67 × 10−4 0.052 0.034 0.137

Organic Hybrid 308 167 20628.5 3.58 × 10−4 −0.034 −0.016 0.163

Cul-de-sac Hybrid 344 167 24249.5 4.18 × 10−3 −0.014 −0.014 0.126

B

Gridiron Organic 590 308 146207.5 5.79 × 10−51 0.143 0.188 0.501

Cul-de-sac Gridiron 344 590 46113 3.50 × 10−44 −0.129 −0.189 0.456

Gridiron Hybrid 590 167 67370 3.92 × 10−13 0.088 0.125 0.264

Organic Hybrid 308 167 18634 5.92 × 10−7 −0.055 −0.063 0.228

Cul-de-sac Hybrid 344 167 22009.5 1.52 × 10−5 −0.041 −0.064 0.190

C

Gridiron Organic 590 308 35447 5.57 × 10−51 −0.220 −0.281 0.501

Cul-de-sac Gridiron 344 590 150614 4.54 × 10−35 0.168 0.270 0.404

Gridiron Hybrid 590 167 30866.5 1.65 × 10−13 −0.136 −0.202 0.268

Organic Hybrid 308 167 32400.5 2.89 × 10−6 0.085 0.079 0.215

Cul-de-sac Hybrid 344 167 33539 2.10 × 10−3 0.032 0.068 0.136

additional infrastructure such as bike lanes, widened sidewalks, and
traffic calming measures.

• Urban planning and zoning strategies. Urban morphology can
inform land-use and density policies. For instance, areas with
disconnected or dendritic street patterns may require integrated
planning interventions that increase permeability, street hierarchy
rebalancing, or mixed-use zoning to support non-automobile travel.

• Spatial prioritization of public transport enhancements. The
method enables city planners to identify neighborhoods where mor-
phological conditions hinder accessibility and multimodal integra-
tion. Such areas can be prioritized for new transit routes, improved
first/last-mile connections, or flexible transport services.

• Scenario modeling and project impact assessments. Morpholog-
ical typologies and their modal associations can be used to simulate
how changes in urban form (e.g., new developments, street recon-
figurations) might affect travel behavior. This enables planners to
assess the likely effectiveness of proposed projects or densification
plans in shifting mode shares toward sustainable alternatives.

• Policy communication and participatory planning. The visual
and typological clarity of the street pattern classification offers a
useful communication tool for engaging with non-technical stake-
holders. It helps explain why some neighborhoods may require
different strategies to foster equitable and sustainable mobility
access.

6 Discussion

This research provides consistent evidence of a relationship between ur-
ban morphology and modal mobility patterns. As shown in Figure 3,
environments characterized by orthogonal structures—particularly those
with a gridiron pattern—exhibit a higher prevalence of active and public
transportation modes compared to more fragmented layouts such as organic
or cul-de-sac patterns. This tendency is functionally coherent, as grid-based
layouts tend to concentrate economic, institutional, and service-related
activities, thereby promoting the use of sustainable modes of transport such
as walking, cycling, and public transit. Salt Lake City serves as a compelling

example supporting this hypothesis which central areas such as Downtown,
Central City, and Capitol Hill are consistently classified as grid-patterned
in both the theoretical framework (Figure 2b1) and the clustering analysis
(Figure 2b2), and these same areas show a modal dominance of active and
public transport (Figure 3).

This association is further supported by quantitative results across all
cities via post hoc analysis (Table 4). For instance, comparing gridiron
and organic patterns reveals statistically significant differences in private
mobility (p-value = 5.57×10−51), with a negative effect size (𝑑 = −0.220)
indicating a lower proportion of this mode in areas with a more structured
street network. Similarly, the effects on active and public mobility are
positive (𝑑 = −0.281 and 𝑑 = 0.501, respectively), reinforcing the
notion that spatial order in urban form tends to foster more sustainable
transport behavior. These tendencies also appear in the comparison between
cul-de-sac and gridiron patterns, highlighting the structural role of urban
morphology in shaping residents’ modal decisions. Overall, the findings
support the central hypothesis of the study, suggesting that urban form
influences not only physical accessibility but also the functional orientation
of mobility systems.

A key limitation of this study concerns the spatial units used to
segment cities, which are based on the U.S. Census Bureau’s administrative
divisions, specifically the tracts. While these units effectively capture a
diverse range of modal and street structure patterns, they may encompass
internal heterogeneity, potentially concentrating certain mobility modes or
street types and compromising the representativeness of the data. Smaller
units such as blocks or sub-blocks could provide greater granularity, but
their use would result in a very large number of highly homogeneous
observations, increasing the likelihood of outliers and distorting aggregated
indicators. For this reason, the use of tracts offers a practical balance
between spatial detail and data manageability. Moreover, the analysis adopts
a planar representation of urban space (Boeing, 2020; Bruyns, Higgins and
Nel, 2020), which limits its ability to account for topographic factors such
as slope, natural barriers, or elevation changes—elements that have been
shown to significantly influence both mobility patterns and the structural
configuration of street networks (Zhou, Wang and Li, 2021; Liang, Kong,
Zhan and Xiao, 2022). These methodological constraints should be taken
into account when interpreting the findings and point to the value of
incorporating three-dimensional urban models in future research to achieve
a more comprehensive understanding of spatial and functional dynamics.
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Looking forward, future research should aim to deepen the theoretical
and empirical understanding of how street network morphology shapes
— and is shaped by — broader socio-spatial processes. While this study
provided a scalable and transferable method to classify urban form and
relate it to travel behavior, further work is needed to explore how these
morphological patterns interact with topographic constraints, land use con-
figurations, environmental risks, and infrastructural inequalities. In partic-
ular, we see potential in developing a critical and computational framework
that bridges urban theory with topological analysis and open-source data
tools. This would enable the construction of comparative morphologies
across diverse geographies — especially in cities of the Global South —
and support planning efforts focused on equitable, resilient, and sustainable
urban transformations.
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