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Abstract

We address the numerical simulation of periodic solids (phononic crystals) within the frame-
work of couple stress elasticity. The additional terms in the elastic potential energy lead to
dispersive behavior in shear waves, even in the absence of material periodicity. To study the
bulk waves in these materials, we establish an action principle in the frequency domain and
present a finite element formulation for the wave propagation problem related to couple stress
theory subject to an extended set of Bloch-periodic boundary conditions. A major difference
from the traditional finite element formulation for phononic crystals is the appearance of higher-
order derivatives. We solve this problem with the use of a Lagrange-multiplier approach. After
presenting the variational principle and general finite element treatment, we particularize it
to the problem of finding dispersion relations in elastic bodies with periodic material proper-
ties. The resulting implementation is used to determine the dispersion curves for homogeneous
and porous couple stress solids, in which the latter is found to exhibit an interesting bandgap
structure.
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1 Introduction

There has been significant interest, especially in recent years, to develop spatially periodic
band gap materials and structures, based upon Floquet-Bloch theory (Floquet, 1883; Bloch,
1929). Recent developments in the field of architectured materials aimed at achieving novel
mechanical properties often rely on enhancements that include effects neglected by classical
theories. Continuum models with local microstructural interactions have become increasingly
popular after the advance and growth in the field of metamaterials, as summarized in the
monograph by Banerjee (2011). A family of models that has regained popularity in the last
few years is the so-called Cosserat-based theories, which are mainly founded on the formulation
by Cosserat and Cosserat (1909). In a wide sense, these material models consider microstruc-
tural effects through a generalization of Cauchy’s postulate to include additional mechanical
interactions involving couples per unit surface or couple-stresses. In the present work, we fo-
cus on a pure continuum mechanics representation by widening the modeling capabilities of
consistent-couple stress theory (C-CST), originally formulated in Hadjesfandiari and Dargush
(2011). In particular, we establish for the first time a principle of stationary correlated ac-
tion for the corresponding reduced wave equation of elastodynamics and extend the theory to
spatially periodic materials, thus providing an objective physical basis to characterize material
through its dispersive behaviour.

The entire family of Cosserat elasticity models depart from the classical Cauchy models in the
consideration of microstructural effects, which are unavoidably expected to occur once the spec-
imen dimensions become comparable to the material microstructural features. These effects
cannot be addressed in classical theories. On the other hand, microstructural effects are intro-
duced through the extension of dynamic and kinematic descriptors from classical continuum
mechanics on a range of alternative models. Voigt (1910) was probably the first to postulate
a model with asymmetric mechanical interactions in terms of couple-stresses: the interaction
between two material points in this continuum encompassed couples per unit contact surface
in addition to the classical Cauchy forces per unit surface. In a landmark contribution, the
Cosserat brothers (Cosserat and Cosserat, 1909) formulated a mathematical theory involv-
ing couple-stresses in which new kinematic variables were introduced in the form independent
micro-rotations. Various later extensions from these theories were also developed by Eringen
(1966); Nowacki (1986); Mindlin (1964); Eringen and Suhubi (1964) in micropolar, microstretch
and micromorphic theories. Alongside, a different branch of developments resulted in a set of
couple stress theories in the work by Toupin (1962), Mindlin and Tiersten (1962) and Koiter
(1964), who used the gradients of the true continuum rotation field to provide the required
kinematic enrichment.

Developments from Hadjesfandiari and Dargush (2011) have resulted in a consistent version
of the models by Toupin (1962), Mindlin and Tiersten (1962) and Koiter (1964) in terms of
couple-stresses. The consistency of this model is reflected in the determinacy of all the force-
stress and couple-stress components, the identification of the necessary and sufficient set of
natural and essential boundary conditions and the elimination of redundant force components.
An approach for evaluating the usefulness and robustness of a continuum mechanics model
is through the determination of its band structure in terms of its dispersion relationships.
These indicate the kinematic response of the material through an identification of the wave
propagation modes that can exist within the model and the frequency dependency of the group
and phase velocities of these potential waves. An effective technique, relying on the assumption
of spatial periodicity, is based on Bloch’s theorem from solid state physics (Brillouin, 1953),
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where the problem of finding the band structure reduces to solving a series of generalized
eigenvalue problems for a variation of the wave vector in the reciprocal space. In the case of the
C-CST model, this problem poses several computational challenges. First, since the enriched
kinematic variables are now curvatures, corresponding to particular second order gradients of
the displacement field, the displacement-based finite element formulation now would require C1

interelement continuity. As shown by Darrall et al. (2014), this numerical issue can be resolved
by introducing Lagrange multiplier techniques, however it is not obvious how to incorporate
these within Bloch analysis. Second, as a result of enforcing the kinematic constraint in terms of
Lagrange multipliers, the computational framework lacks inertial components associated with
the rotational interactions. Since there is only a mass matrix associated with the translational
degrees of freedom, special attention is needed in solving the eigenproblem. Both of these issues
are resolved in the present work.

The characterization of the bulk properties of periodic materials is commonly done finding the
band structure or dispersion relations (Hussein et al., 2014). Commonly, this band structure is
obtained using a numerical method such as the Boundary Element Method (Li et al., 2013a,b),
the Finite Difference Method (Tanaka et al., 2000; Su et al., 2010; Isakari et al., 2016), the
Finite Element Method (Langlet et al., 1995; Guaŕın-Zapata and Gomez, 2015; Valencia et al.,
2019; Mazzotti et al., 2019; Guaŕın-Zapata et al., 2020; Chin et al., 2021), or the Plane Wave
Expansions (Cao et al., 2004; Xie et al., 2017; Dal Poggetto and Serpa, 2020). We favor the
use of the Finite Element Method because of its maturity and versatily to represent arbitrary
geometries and boundary conditions. In this work, we find the dispersion relations modeling
a single unit cell of the material and using Bloch’s theorem. There have been few works on
periodic materials involving generalized continua and these have been related to micropolar
elasticity (Zhang et al., 2018; Guaŕın-Zapata et al., 2020). To the best of our knowledge, this
is the first work using a higher-order elasticity model for phononic crystals.

Here we establish a new variational principle in the temporal frequency domain for reduced
couple stress elastodynamics and then extend the finite element algorithm from Darrall et al.
(2014) to the case of spatially periodic material cells with Bloch boundary conditions. We ex-
amine first the closed form dispersion relationships for the homogeneous version of the model.
This homogeneous model already involves micromechanical effects through a length scale mate-
rial parameter, however additional effects can be considered in terms of explicit representations
of geometric features at the fundamental material cell level. We then formulate a variational
statement together with the imposition of an extended version of the usual Bloch periodic
boundary conditions that satisfies Hermiticity and positive definiteness for C-CST. Subse-
quently, this statement is modified by introducing an artificial independent rotation field tied
to the continuum displacement field through the enforcement of a Lagrange multiplier field
that is shown to equal the skew-symmetric part of the force-stresses. The resulting numerical
framework is tested by comparing its results with those obtained in closed form for the ho-
mogeneous case and by applying it to a porous periodic material cell design, which displays
interesting bandgap behavior that has not been resported previously.
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2 Governing equations

2.1 Forces and moments in the C-CST solid

The fundamental signature of the extended continuum model considered in this work is the
presence of rotational mechanical interaction, in addition to the classical translational inter-
action between material points in the continuum. Following a generalized Cauchy’s postulate
(Mindlin and Tiersten, 1962; Koiter, 1964) we define force and couple traction vectors t

(n̂)
i and

m
(n̂)
i respectively as

t
(n̂)
i = lim

∆S(n̂)→0

∆Ri
∆S(n̂)

(1a)

m
(n̂)
i = lim

∆S(n̂)→0

∆Mi

∆S(n̂)
, (1b)

and where ∆S(n̂) is a small element of area oriented with unit normal n̂ while ∆Ri and ∆Mi are
the resultant force and couple moment, respectively. However, only the tangential components
of m

(n̂)
i exist as independent bending couple tractions (fig. 1).

Figure 1. In the C-CST model mechanical effects are described through linear and rotational
interactions in terms of resultant forces and moments at the material point. These resultants
act on the surface element ∆S over a plane whose unit outward normal is n̂.

Note that while the force-tractions vector t
(n̂)
i is a polar vector, the couple-tractions vector

m
(n̂)
i is an axial vector. Force-tractions and couple-tractions are also described by projections

of the non-symmetric force-stress tensor σij and the couple-stress µij tensors according to:

t
(n̂)
i = σjinj , (2a)

m
(n̂)
i = µjinj = εijkµknj , (2b)

where µij is skew-symmetric. Thus, µij = −µji and the couple-stress tensor can be written as
a polar vector with

µk =
1

2
εkjiµji ,

where εijk is the Levi-Civita permutation symbol leading to the last form in (2b), which clearly

shows that m
(n̂)
i is tangential to the surface.
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Consideration of the linear and angular balance equations for an arbitrary part of the material
continuum of volume V , bounded by external surface S leads to the following force-stress and
couple-stress equilibrium equations for the C-CST model:

σji,j + fi = ρüi ,

µji,j + εijkσjk = 0 ,
(3)

where fi are forces per unit volume, and ρ is the mass density. Notice that, in contrast to
micropolar models (Guaŕın-Zapata et al., 2020) where there is a rotational inertial density and
a body couple term, in this model the balance equations already include those contributions.
This particular aspect of the C-CST model is discussed in the original paper by Hadjesfandiari
and Dargush (2011) where it is also proved that from

εijk(µk,j + σjk) = 0 , (4)

it follows that µk,j + σjk is symmetric and as a result its skew-symmetric part is zero leading
to

σ[ji] = −µ[i,j] .

This gives the skew-symmetric part of the force-stress tensor in terms of the couple-stress
vector, which also can be described by its dual vector representation

si =
1

2
εijkµk,j .

2.2 Kinematics and constitutive relations

In the linear C-CST model, kinematics is described by the classical infinitesimal strain (eij)
and rotation (θij) tensors

eij =
1

2
(ui,j + uj,i) , (5a)

θij =
1

2
(ui,j − uj,i) , (5b)

and by the mean curvature tensor

κij =
1

2
(θi,j − θj,i) , (6)

where

θi =
1

2
εijkθkj .

Equation (6) can also be written in polar form, as an engineering curvature vector (Darrall
et al., 2014)

κi = εijkθj,k =
1

2
(ui,kk − uk,ik) (7)

since
κi = εijkκjk .
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For a linear elastic centrosymmetric C-CST continuum, the constitutive equations can be writ-
ten as

σ(ij) = Cijklekl ,

µi = Dijκj ,
(8)

where Cijjkl is the stiffness tensor as in classical (anisotropic) elasticity, and Dij is an additional
material tensor that accounts for couple-stress effects. In the expressions above, parentheses
as subindices are used to indicate the symmetric part of the tensor. In the case of a linear
isotropic elastic C-CST continuum,

Cijkl = λδijδkl + µ(δikδjl + δilδjk),

Dij = 4ηδij ,
(9)

where µ and λ are the Lamé parameters as in classical elasticity, while η is the additional
material coefficient that accounts for couple-stress effects. Then, the constitutive equations for
isotropy can be simplified to

σ(ij) = λekkδij + 2µeij ,

µi = 4ηκi .
(10)

2.3 Displacement equations of motion

At this point it may be convenient to alternate between index and explicit vector notation.
In the latter, the gradient operator reads ∇ = ∂

∂xi
in Cartesian coordinates. In these terms,

the time domain displacement equations of motion are obtained after using the constitutive
relations (10) in the equilibrium equations (3) yielding

(λ+ 2µ)∇(∇ · u)− µ∇×∇× u + η∇2∇×∇× u = ρü . (11)

Defining the phase/group speed for the longitudinal (P) wave c1 (which is not dispersive), the
low-frequency (k → 0) phase/group speed for the transverse wave (S) c2 (which is dispersive)
and the intrinsic material length scale parameter l (which is not present in classical elasticity),
such that

c21 =
λ+ 2µ

ρ
, c22 =

µ

ρ
, l2 =

η

µ
, (12)

allows us to write (11) in the form

c21∇(∇ · u)− c22(1− l2∇2)∇×∇× u = ü . (13)

2.4 Dispersion relations for unbounded domains

Using a Helmholtz decomposition, the displacement field can be written in terms of the scalar
and vector potentials ϕ and H (Arfken et al., 2005) as

u = ∇ϕ+∇×H , ∇ ·H = 0 ,
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and replacing this in (13) gives the following set of uncoupled wave equations

c21∇2ϕ = ϕ̈ , (14)

c22(1− l2∇2)H = Ḧ , (15)

where it is observed that the equation for the rotational potential follows a higher-order wave
equation that is inherently dispersive. This becomes evident after assuming a solution of the
form u = ũeikx−iωt which gives the dispersion relations

ω2
P = c21k

2 , (16)

ω2
S = c22k

2(1 + k2l2) . (17)

Solving the above for k, we have in each case

k2
P =

ω2

c21
, k2

S =
1

2l2

[
±

√
1 +

4ω2l2

c22
− 1

]
.

Noticing that the quantity inside the square root is always greater than 1 indicates that we
should consider only the positive root, while the negative root corresponds to an evanescent
wave that should arise under certain boundary conditions. The phase and group speeds are
now given by

vP = c1 , gP = c1 ,

vS(k) = c2
√

1 + k2l2 , gS = c2
1 + 2k2l2√

1 + k2l2
.

(18)

Taking the low and high frequency limits k → 0 and k →∞ gives

lim
k→0

vS = lim
k→0

gS = c2 ,

lim
k→∞

vS = lim
k→∞

gS →∞ ,

which shows how the speed of energy flow increases with frequency. All of these relations are
displayed in fig. 2.
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Figure 2. Dispersion relations for a homogeneous C-CST material with properties: ρ = 1×105,
λ = 2.8 × 1010, η = 1.62 × 109, µ = 4 × 109. The plot on the left shows the frequency-wave
number relation for the non-dispersive P-wave (continuous line) and the dispersive SV (dashed
lines). The plots in the middle and right part of the figure show the phase and group speeds
for the dispersive modes.

2.5 Frequency domain equations

Bloch analysis considering spatial periodicity of the material is naturally conducted in the
Fourier domain, involving both the temporal frequencies and spatial wave numbers. After
performing a Fourier transform of the linear and angular momentum equations (3) to the
temporal frequency domain, these become

σ̃ji,j + f̃i = −ρω2ũi ,

µ̃ji,j + εijkσ̃jk = 0 ,
(19)

where the superposed tilde denotes a complex Fourier amplitude.

After introducing the constitutive equations (8) for centrosymmetric materials into (19) and
then combining the angular momentum and linear momentum balance laws into a single set in
terms of displacement, one finds:

(Cijklũk,l),j +
1

4
εpijεpmn{Dnk(ũk,ll − ũl,kl)},mj + fi = −ρω2ũi (20)

Substituting (9) and (12) for isotropic materials into (20) provides the corresponding Fourier
domain reduced wave equations in the absence of body forces, which can be written

c21∇(∇ · ũ)− c22(1− l2∇2)∇×∇× ũ = −ω2ũ . (21)

Notice that (21) is the temporal Fourier transform of (13).
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3 Variational principles

We will describe next a variational formulation for the elastodynamic C-CST model. An inher-
ent complexity is the presence of second order displacement gradients arising in the curvatures
(7), which requires C1 continuity of the displacement field.

Let us consider a volume V with boundary S, having specified body forces fi, force-tractions
ti, and couple-tractions mi (see fig. 3). The boundary S is split into different segments, where
Su represents the portion of S with specified displacements, St represents the surface with
prescribed tractions, Sθ represents the segment with enforced rotations, and Sm the boundary
with prescribed couple-tractions. Additionally, S = Su∪St = Sθ∪Sm and Su∩St = Sθ∩Sm = ∅.
In general, Su and St might overlap with Sθ and Sm. This is an important aspect of the C-CST
model that is relevant in the solution of boundary value problems, as we shall see later.

Figure 3. Schematic representation of the domain and boundary conditions for the C-CST
model.

We begin with the following couple stress elastodynamic action functional in the frequency
domain, as an extension of the elastostatic formulations introduced by Hadjesfandiari and
Dargush (2011) and Darrall et al. (2014):

A[u;ω] = U [u;ω] + T [u;ω] + V[u;ω], (22)

Here, and in the remainder of this paper, the superposed tilde has been suppressed for notational
convenience. Meanwhile, the elastic, kinetic and applied load actions can be written in explicit
form, respectively, as

U [u;ω] =
1

2

∫
V

e∗ijCijklekl dV +
1

2

∫
V

κ∗iDijκj dV , (23)

T [u;ω] = −ω
2

2

∫
V

u∗i ρui dV , (24)

V[u;ω] = −
∫
V

u∗i fi dV −
∫
St

u∗i t
(n̂)
i dS −

∫
Sm

θ∗im
(n̂)
i dS . (25)

with the asterisk denoting complex conjugate.
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The stationarity of this action becomes

δA[u;ω] = δU [u;ω] + δT [u;ω] + δV[u, ω]) = 0, (26)

or

δA[u;ω] =

∫
V

δe∗ijCijklekl dV +

∫
V

δκ∗iDijκj dV − ω2

∫
V

δu∗i ρui dV

−
∫
V

δu∗i fi dV −
∫
St

δu∗i t
(n̂)
i dS −

∫
Sm

δθ∗im
(n̂)
i dS = 0,

(27)

which can serve as the weak form for a finite element formulation in reduced elastodynamics.
With the appearance of mean curvature in (27), this would require C1 spatial continuity of
displacements ui.

Next, let us derive the Euler-Lagrange equations associated with the functional A[u;ω]. Start-
ing from the first variation in (27), we repeatedly apply integration-by-parts operations and
the divergence theorem to shift all of the spatial derivatives from the variations to the true
fields. This leads to the following statement:∫

V

δu∗i [(Cijkluk,l),j +
1

4
εpijεpmn{Dnk(uk,ll − ul,kl)},mj + fi + ρω2ui] dV

+

∫
St

δu∗i [t
(n̂)
i − σjinj ] dS

+

∫
Sm

δθ∗i [m
(n̂)
i − εijkµknj ] dS = 0.

(28)

For arbitrary variations, each set of terms inside the square brackets must be zero. Thus, the
Euler-Lagrange equations can be written:

(Cijkluk,l),j +
1

4
εpijεpmn{Dnk(uk,ll − ul,kl)},mj + fi = −ρω2ui in V (29)

t
(n̂)
i = σjinj on St

m
(n̂)
i = εijkµknj on Sm

(30)

Notice that (29) are the reduced wave equations from (20), while (30) represent the correspond-
ing natural boundary conditions for C-CST. In the isotropic case, substituting (9) into (29)
produces

c21uj,ji − c22εijkεkmn(un,mj − l2un,mjll) + fi = −ω2ui in V (31)

which is the equivalent of (21) in index notation.

Performing an inverse Fourier transform of individual terms in (22)-(25) back to the time
domain, one finds

F−1[u∗v] = (u ? v)(t) (32)

where the ? operator denotes correlation over time, such that

(u ? v)(t) =

∫ ∞
−∞

u(τ)v(t+ τ)dτ. (33)
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Consequently, we have established the following stationary Principle of Correlated Action for
couple stress elastodynamics: Of all the possible displacement fields in V that satisfy the
frequency domain kinematic boundary conditions on Su and Sθ, the one that renders the
action A[u;ω] in (22) stationary corresponds to the solution of the reduced wave equations
(29) and traction boundary conditions (30).

We should emphasize that this stationary Principle of Correlated Action also holds for classical
theory, if one neglects contributions from mean curvature and moment tractions. Thus, the
classical correlated action for reduced elastodynamics can be written:

Acl[u;ω] =
1

2

∫
V

e∗ijCijklekl dV − ω2

2

∫
V

u∗i ρui dV

−
∫
V

u∗i fi dV −
∫
St

u∗i t
(n̂)
i dS .

(34)

4 Response of Periodic Materials

This section summarizes the most relevant theoretical aspects for the numerical analysis of
periodic materials. An in-depth treatment of the subject can be found in classical textbooks,
such as Brillouin (1953) and Kittel (1996), while a comprehensive review is provided in Hussein
et al. (2014). In our discussion we will use a generalized form of the reduced wave equation,
however we will provide the Bloch-Floquet boundary conditions for the particular case of the
C-CST model.

4.1 Bloch’s theorem

Consider a reduced elastodynamic wave equation in the frequency domain of the form

Lu(x) = −ρω2u(x) (35)

valid for a field u at a spatial point x. Here L is a positive definite linear differential operator
(Reddy, 1986; Kreyszig, 1978; Johnson, 2010), while ρ is the mass density and ω the corre-
sponding angular frequency. Bloch’s theorem (Brillouin, 1953) establishes that solutions to
(35) are of the form

u(x) = w(x)eik·x (36)

where w(x) is a Bloch function carrying with it the same periodicity as the material. Since
the spatial period in w(x) is the lattice parameter a, it follows that

w(x + a) = w(x).

Accordingly, (36) is the product of a spatially periodic function w(x), with the periodicity
of the lattice, and a plane wave (of wave vector k), which is also periodic. As a result, field
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variables Φ at opposite sides of the unit cell and separated by the lattice vector a are related
through

Φ(x + a) = Φ(x)eik·a. (37)

In this case, Φ refers to the principal variable involved in the physical problem, or to any of its
spatial derivatives. From a physical point of view, (37) means that a field variable Φ at points
x and x + a differ only by the phase shift eik·a.

In the classical elastodynamic case in which L is the Navier operator of order 2, the generalized
Boundary Value Problem (BVP) considering Bloch boundary conditions (BBCs) takes the
form:

Lu(x) = −ρω2u(x) , (38a)

u(x + a) = u(x)eik·a , (38b)

σ(x + a) · n̂ = −σ(x) · n̂ eik·a , (38c)

where u(x+a) and u(x) give the field at x+a and x, respectively, and σ(x) is the corresponding
stress. Meanwhile, a = a1n1 +a2n2 +a3n3 is the lattice translation vector and ni are the lattice
normal parameters.

Note that the BVP encompassed by (38) simultaneously describes the space-time periodicity
of the solutions in the cellular material. Time periodicity is present in the frequency-domain
nature of the reduced wave equation, while space periodicity explicitly appears in the wave
number representation of the boundary conditions. The periodic relationship between opposite
sides of the fundamental cell, appearing in the boundary terms, allows characterization of
the fundamental properties of the material with the analysis of a single cell. At the same
time the wave vector k in (38) simultaneously describes: (i) the propagation direction of a
plane wave traveling through the unit cell and (ii) the spatial periodicity of the plane wave.
In consequence, finding solutions to the Bloch-BVP amounts to finding those tuples (ω,k,u)
satisfying (38) when k is varied in the dual Fourier based representation of the fundamental
material cell. This dual space corresponds to the reciprocal space and since it carries with it
the periodic character of the physical space it suffices to consider values (and directions) of k
within this reciprocal space representation of the unit cell.

In the case of the C-CST medium, Bloch’s theorem states that the eigenfunctions of (21) can
be expressed in the form

u(x) = u(x + a)eik·a

where a is a vector that represents the periodicity of the material. That is, the solution
is the same at opposite sides of the unit cell, except for a phase shift factor eik·a. Due to
the linearity of the differential equations we also have Bloch-periodic boundary conditions
for the corresponding rotation and traction vectors. Thus, in the case of the C-CST elastic
solid, Bloch’s theorem reduces to the following set of boundary conditions for displacements,
rotations, force-tractions and couple-tractions in index notation:

ui(x) = ui(x + a)eik·a , (39a)

θi(x) = θi(x + a)eik·a , (39b)

ti(x) = −ti(x + a)eik·a , (39c)

mi(x) = −mi(x + a)eik·a . (39d)

12



The set of conditions summarized in (39) will be satisfied in a variational sense using a finite
element formulation, where the first two are essential boundary conditions and the other two
natural boundary conditions. Subsequently, a numerical model of the unit cell resulting in a
generalized eigenvalue problem will be solved for various specifications of the wave vector.

4.2 Hermiticity

Our finite element algorithm follows from the action functional formulated in (22). As discussed
previously this amounts to the solution of the weak form of the frequency domain reduced wave
equations subject to Bloch-periodic boundary conditions, as given by (39). Neglecting body
forces in (22), we have:

A[u;ω] =
1

2

∫
V

e∗ijCijkleij dV +
1

2

∫
V

κ∗iDijκi dV − ω2

2

∫
V

u∗i ρui dV

−
∫
St

u∗i ti dS −
∫
Sm

θ∗imi dS ,

(40)

To obtain real eigenvalues that correspond to propagating waves in the band structure of the
material, the matrices resulting from the finite element discretization must be Hermitic. Equiv-
alently, we must prove Hermiticity (self-adjointness) in the action functional. This amounts to
showing that the boundary terms in (40) vanish under Bloch periodic boundary conditions.

Substitution of (39) into surface integral terms of (40) yields∫
S

u∗i (x)ti(x) dS +

∫
S

θ∗i (x)mi(x) dS =

∑
q


∫
Sq

[u∗i (x)ti(x) + u∗i (x + aq)ti(x + aq)] dSq +

∫
Sq

[θ∗i (x)mi(x) + θ∗i (x + aq)mi(x + aq)] dSq

 ,

(41)

with the index q referring to each pair of opposite sides of the boundary. Introducing the phase
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shifts and pulling out the common factors give:∫
S

u∗i (x)ti(x) dS +

∫
S

θ∗i (x)mi(x) dS =

∑
q


∫
Sq

u∗i (x)
[
ti(x) + eik·ati(x + aq)

]
dSq +

∫
Sq

θ∗i (x)
[
mi(x) + eik·ami(x + aq)

]
dSq

 ,

(42)

which after substituting (39c) and (39d) leads to the vanishing of the boundary terms, thus
proving the Hermiticity condition.

4.3 Positive definiteness

Similarly, the proof for positive (semi)-definiteness reduces to showing that the action func-
tionals are related in such a way that:

ω2 =
U [u;ω]

T̃ [u;ω]
≥ 0 , (43)

where

U [u;ω] =
1

2

∫
V

e∗ijCijklekl dV +
1

2

∫
V

κ∗iDijκj dV

and

T̃ [u;ω] =
1

2

∫
V

u∗i ρui dV ,

with the latter deriving directly from T [u;ω].

Note that we have used the general representation Cijkl and Dij for the constitutive tensors.
The functional U [u;ω] is positive as long as these constitutive tensors are positive definite,
which holds true if they satisfy

Cijkleijekl ≥ 0 ∀ emn ,
Dijκiκj ≥ 0 ∀ κm .

For isotropic materials, this implies the following constraints for the material parameters:

µ > 0 , 3λ+ 2µ > 0 , η > 0 .

On the other hand, the condition ui 6= 0, requires T̃ to be different from zero and thus the
condition required by (43). In the case of rigid body motion, U could be zero implying that
the form is positive semi-definite, while the form T̃ is positive definite.
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5 Finite element formulation

In this section, we derive a consistent finite element formulation for periodic couple stress elas-
todynamics, as an extension of those formulated by Darrall et al. (2014) for the corresponding
quasistatic problem and by Guaŕın-Zapata et al. (2020) for periodic micropolar Bloch analysis.
In particular, the C1 displacement continuity requirement is avoided by using a Lagrange multi-
plier approach. Other finite element solutions in C-CST include a penalty method for isotropic
elastostatics (Chakravarty et al., 2017), Lagrange multipliers for centrosymmetric anisotropic
elastostatics (Pedgaonkar et al., 2021) and mixed variable methods for isotropic elastodynamics
(Deng and Dargush, 2016, 2017).

5.1 Lagrange multiplier reformulation

Consider now a modification of the action given in (40) to include Lagrange multipliers λi that
enforce compatibility between the displacement field ui and an assumed independent rotation
field θi. Thus, the modified action becomes

Â[u;ω] =
1

2

∫
V

e∗ijCijkleij dV +
1

2

∫
V

κ∗iDijκi dV − ω2

2

∫
V

u∗i ρui dV

−
∫
St

u∗i ti dS −
∫
Sm

θ∗imi dS

+

∫
V

λ∗i (εijkuk,j − 2θi) dV .

(44)

For stationarity, we require

δÂ =
∂Â
∂ui

δui +
∂Â
∂θi

δθi +
∂Â
∂λi

δλi = 0 ,

which is equivalent to∫
V

δe∗ijCijkleij dV +

∫
V

δκ∗iDijκi dV − ω2

∫
V

δu∗i ρui dV

−
∫
St

δu∗i ti dS −
∫
Sm

δθ∗imi dS

+

∫
V

δλ∗i (εijkuk,j − 2θi) dV

+

∫
V

(εijkδu
∗
k,j − 2δθ∗i )λi dV .

(45)

Equation (45) is the modified weak form that will be used here as the basis for the finite
element Bloch analysis of an elastic couple-stress solid. The Lagrange multiplier terms enforce

15



the required kinematic constraint between the continuum rotations εijkuk,j of the material
point and the independent rotational variables θi.

From (45), we obtain the following Euler-Lagrange equations

(Cijklekl + εijkλk),j = −ρω2ui in V,

εijk(Dklκl),j − 2λi = 0 in V,

θi =
1

2
εijkuk,j in V,

ti = (Cijklekl + εijkλk)nj on St,

mi = εijkDklκlnj on Sm ,

(46)

Comparing this with (4), we can conclude that the Lagrange multipliers equal the skew-
symmetric part of the force-stress tensor, i.e.,

λi = si .

5.2 Discretization

To discretize (45), we use for the element-based shape functions second-order Lagrange in-
terpolation for the displacements and rotations and constant skew-symmetric stresses. This
translates into C0 inter-element displacement and rotation continuity, and skew-symmetric
stresses that are constant within the element but discontinuous between elements. Figure 4 de-
picts a typical element for the discretization and the degrees of freedom used in two-dimensional
idealizations.

Figure 4. Finite element used for the finite element discretization of the C-CST material
model. A second-order Lagrange interpolation is used for displacements and rotations while a
constant is used for the skew-symmetric stresses. The nodal degrees of freedom are depicted
as black disks while the white disk describes the element skew-symmetric force-stress degree of
freedom.

To write the discretized equations, we will use a combined index notation. In this context
subscripts will still make reference to scalar components of tensors while capital superscripts
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will indicate interpolation operations. For instance in the expression

ui =uN
Q
i u

Q

subscripts i indicate the scalar components of the vector u. To facilitate further operations
this subscript is also placed in the shape function resulting in terms like uN

Q
i and where the

term uQ represents the nodal point displacement associated to the Qth nodal point. This
nodal vector implicitly considers horizontal and vertical rectangular components. To clarify,
the displacement interpolation scheme written here as ui =uN

Q
i u

Q takes the following explicit
form for the single nodal point Q:

[
ux
uy

]
=

[
· · · N

Q 0
0 NQ · · ·

]
...
uQx
uQy
...

 . (47)

With this notation we write for the primary variables (ui, θi, si) the following interpolated
versions

ui =uN
Q
i u

Q, θi =θN
Q
i θ

Q, si =sN
Q
i s

Q , (48)

and similarly for the secondary kinematic descriptors eij , εijkui,j and κi

eij =eB
Q
iju

Q, εijkui,j =∇B
Q
k u

Q, κi =κB
Q
i θ

Q , (49)

together with the constitutive equations

σij = Cijklekl ,

µi = Dijκj .
(50)

Substitution of the above relations in (45) gives the discrete version of the first variation of the
modified correlated action;

δÂ = δuQ∗
∫
V

(eB
Q
ij)(Cijkl)(eB

P
kl) dV uP − ρω2δuQ∗

∫
V

(uN
Q
i )(uN

P
i ) dV uP

− δuQ∗
∫
V

uN
Q
i fi dV − δuQ∗

∫
S

uN
Q
i ti dS + δθQ∗

∫
V

(κB
Q
i )(Dij)(κB

P
j ) dV θP

− δθQ∗
∫
S

θN
Q
i mi dS + δsQ∗

∫
V

(sN
Q
k )(∇B

P
k ) dV uP + δuQ∗

∫
V

(∇B
Q
k )(sN

P
k ) dV sP

− δsQ∗
∫
V

2(sN
Q
k )(θN

P
k ) dV θP − δθQ∗

∫
V

2(θN
Q
k )(sN

P
k ) dV sP = 0 .

(51)

The explicit form of the interpolators defined above is given in the appendix.
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5.3 Discrete equilibrium equations

From the arbitrariness in the variations δuQ , δθQ and δsQ in (51) it follows that:∫
V

(eB
Q
ij)(Cijkl)(eB

P
kl) dV uP −

∫
V

(uN
Q
i )(uN

P
i ) dV uP −

∫
V

uN
Q
i fi dV −

∫
S

uN
Q
i ti dS = 0 ,

∫
V

(κB
Q
i )(Dij)(κB

P
j ) dV θP −

∫
S

θN
Q
i mi dS −

∫
V

2(θN
Q
k )(sN

P
k ) dV sP = 0 ,

∫
V

(sN
Q
k )(∇B

P
k ) dV uP −

∫
V

2(sN
Q
k )(θN

P
k ) dV θP = 0 ,

which can be written in the standard finite element form for dynamic equilibriumKQP
uu 0 KQP

us

0 KQP
θθ −KQP

θs

KQP
su −KQP

sθ 0


uP

θP

sP

 = ω2

MQP
uu 0 0
0 0 0
0 0 0


uP

θP

sP

+


FQu
mQ
θ

0

 (52)

where the individual terms are defined as

KQP
uu =

∫
V

(eB
Q
ij)(Cijkl)(eB

P
kl) dV , MQP

uu = ρω2

∫
V

(uN
Q
i )(uN

p
i ) dV ,

KQP
us =

∫
V

(∇B
Q
k )(sN

P
k ) dV , FQu =

∫
V

uN
Q
i fi dV +

∫
S

uN
Q
i ti dS ,

KQP
θθ =

∫
V

(κB
Q
i )(Dij)(κB

P
j ) dV , KQP

θs =

∫
V

2(θN
Q
k )(sN

P
k ) dV ,

mQ
θ =

∫
S

θN
Q
i mi dS , KQP

su =

∫
V

(sN
Q
k )(∇B

P
k ) dV ,

KQP
sθ =

∫
V

2(sN
Q
k )(θN

P
k ) dV .

Equation (52) can be rewritten in the following set of equilibrium equations in terms of nodal
forces and couples

fQ(σ) + fQs − fQI − T
Q = 0 ,

mQ
µ +mQ

s − qQ = 0 ,

s(θ − θ̂) = 0 ,

(53)

where the subindex (σ) refers to the symmetric part of the stress tensor, and I to inertial
forces. Notice that we do not have an inertial term for the second equation as is the case for
the micropolar model (Guaŕın-Zapata et al., 2020). We also have a third equation reflecting the
kinematic restriction, between the rotation θ and the introduced degree of freedom θ̂, imposed
via the Lagrange-multiplier term s in each element.

When using a Lagrange multiplier formulation as in (45) the equations are still self-adjoint, as
can be seen in the structure of (52). Nevertheless, the stiffness matrix is indefinite and the
solution of the problem represents a saddle-point instead of a minimum (Arnold, 1990; Darrall
et al., 2014).
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5.4 Eigenvalue problem

In finding the dispersion relations, we are interested in the free wave motion in the media. This
leads to the following eigenvalue problem

[K]{U} = ω2[M ]{U} (54)

with

[K] =

KQP
uu 0 KQP

us

0 KQP
θθ −KQP

θs

KQP
su −KQP

sθ 0

 , [M ] =

MQP
uu 0 0
0 0 0
0 0 0

 , {U} =


uP

θP

sP

 .

In (54) Bloch-periodic boundary conditions are yet to be imposed. This can be done in two ways
(Valencia et al., 2019): (i) modifying the connectivity of the elements; and (ii) assembling the
matrices without considering boundary conditions and impose the Bloch-periodicity through
row/column operations. In this work, we follow the second approach as it requires the stiffness
and mass matrices to be assembled once and the transformation matrices are computed for
every wavenumber in the first Brillouin zone. This process results in the following eigenvalue
problem

[KR(k)]{U} = ω2[MR(k)]{U} (55)

with
[KR(k)] = [T (k)HKT (k)] , [MR(k)] = [T (k)HMT (k)] ,

where [T (k)] represents the transformation matrix for a given k, and the [TH ] refers to the
Hermitian transpose of [T ]. For an explicit form for the matrices [T ] refer to Hussein et al.
(2014) or Guaŕın-Zapata (2012).

We conducted the implementation on top of the in-house finite element code SolidsPy (Gómez
and Guaŕın-Zapata, 2018) and used SciPy to solve the eigenvalue problem (Virtanen et al.,
2020). To take advantage of the sparsity of the matrices the problem should be written as
matrix-vector multiplications, such as

{x} = [T ]{U} ,
{y} = [K]{x} ,

{z} = [TH ]{y} ,

with {z} representing the image of the linear operator [KR] over {U}. The same procedure
can be applied for the right-hand side of (55).

The Lagrange-multiplier approach represents a saddle-point instead of a minimization problem
(Arnold, 1990). This can be seen in the structure of the stiffness matrix obtained in equation
(54). Furthermore the mass matrix is not positive definite anymore. This structure for the
eigenvalue problem requires the use of a specific solver such as the LOBPCG method (Knyazev,
2001) instead of the classical Arnoldi method (Lehoucq et al., 1998).
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6 Results: Dispersion relations for C-CST cellular
materials

In this section we conduct a series of dispersion analyses intended to show the effectiveness of
our mixed finite element implementation of the C-CST material model in predicting the correct
wave propagation properties of the material. All the dispersion graphs use the dimensionless
frequency

Ω =
2dω

c2
, (56)

for the vertical axis, where 2d is the dimension of the unit cell and c22 = µ/ρ is the speed of the
shear wave for a classical elastic material. The Poisson ratio for all the simulations is ν = 1/4.

As a first instance we find the response of a homogeneous periodic material which has also
a closed form solution. We will then continue to study a second prototypical example corre-
sponding to a homogeneous material with a circular pore. These two problems exhibit two
different levels of dispersive behavior. In the homogeneous material cell, dispersion is due to
the kinematic enrichment of the model associated to the length scale parameter, while in the
porous material model additional dispersion arises due to the explicit microstructural feature.

6.1 Homogeneous material

As a test of accuracy and effectiveness of our implementation we consider the case of a homo-
geneous material cell with the same mechanical properties of the material reported previously
and with closed form dispersion relations from (16) and (17). In this model microstructural
effects are introduced through the material length parameter `. Recall that `2 is defined by
the ratio η

µ
where η is the curvature-couple-stress module while µ is the shear modulus from

Cauchy elasticity. The results in terms of the resulting band structure are shown in fig. 5, where
we used a 16× 16 mesh and `2/d2 = 3/8. For a conceptual description of the reciprocal space
and a guide on how to interpret the results in a Bloch analysis the reader is referred to Valencia
(2019). Note that this set of results is directly comparable with the curves from the closed
form solutions from fig. 2. Since the material is isotropic there are no directional effects and,
as discussed previously, the only difference between this model and the result from classical
elasticity is the dispersive behavior of the shear wave. In contrast with the micropolar model
(Guaŕın-Zapata et al., 2020), the present C-CST model does not exhibit additional rotational
waves.
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Unit cell

First Brillouin zone

X

Figure 5. Dispersion relations for a homogeneous material model. Solid lines represent FEM
results while markers correspond to the analytic solution. Triangular and filled-dots describe
the P and SV wave modes, respectively.

Figure 6 shows the results for the same material cell but now we have considered 4 different
values of the length scale parameter corresponding to `/d ∈ [0.01, 0.1, 1, 10]. The mesh in this
case is 16×16. Notice that, as expected, the increasing value of this parameter only affects the
dispersive response of the shear waves while the P-waves retain their classical non-dispersive
behavior. As seen in (17) the dispersion increases for higher values of ` due to the factor√

1 + k2`2 in the dispersion relation. This behavior is closely followed by the numerical results
presented in fig. 6.
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Figure 6. Dispersion relations for a homogeneous material model with varying length scales,
`/d ∈ [0.01, 0.1, 1, 10]. Solid lines represent FEM results while markers correspond to analytic
solutions. As expected, for increasing `/d the S-wave presents more dispersion due to the factor√

1 + k2`2, as presented in (17).

As an additional verification, we also tested the convergence in the calculation of the dispersion
relations after considering the first 8 modes for a sequence of meshes of 1 × 1, 2 × 2, 4 × 4,
and 8 × 8 elements for `2/d2 = 3/8. The error in the eigenvalue computation was measured
according to

e =
‖ωref − ωh‖2
‖ωref‖2

,

where ωh is the set of eigenvalues (dispersion relation) for a mesh of characteristic element
size h and ωref is the solution corresponding to the finer 16 × 16 elements mesh, which has
been taken as reference. The results for this sequence, together with the variation in the error
parameter, are displayed in fig. 7. The estimated convergence rate for the eigenvalues is 2.32.
We see that when we refine the mesh it can reproduce the dispersion curves better for higher
frequencies. There are still some differences between the 8 × 8 and 16 × 16 meshes around
the dimensionless frequency of 15 but these differences will disappear with further refinement.
Nevertheless, opposed to what happens in classical continua we would need more points per
wavelength every time that we want to increase the maximum frequency. This is due to the
inherent dispersive behavior of S-waves as can be seen in equation (17). Thus, we would expect
to need more than 10 points per wavelength, customary for finite element methods, or 5,
customary for spectral element methods (Komatitsch and Tromp, 1999; Ainsworth and Wajid,
2009; Guaŕın-Zapata and Gomez, 2015). Again, we should emphasize the dispersive nature of

22



the SV-waves, while the P-waves remain non-dispersive.

2.32

1×1 elements

4×4 elements 8×8 elements

2×2 elements

Figure 7. Convergence of the first 8 modes in the dispersion relations at `2/d2 = 3/8 for a
sequence of meshes with: 1 × 1, 2 × 2, 4 × 4, and 8 × 8 elements — presented as solid blue
lines in the background. The results are compared with a mesh that has 16 × 16 elements —
presented as dots in the foreground. The estimated convergence rate for the eigenvalues in the
2-norm is 2.32.

6.2 Dispersion in cellular material with a circular pore

Now, we consider a C-CST composite material cell configured by a circular pore embedded in
a homogeneous matrix. The presence of the pore provides the model with a second length-
scale due to the microstructure, in addition to the one introduced by the material length-scale
parameter `. For illustration, we assume a pore diameter a that is half the cell length (i.e.,
a = d). Thi is equivalent to a porosity of π/16 or approximately 0.196, which is kept fixed as
we modify the size of the unit cell to control `/a.

The resulting dispersion curves for this cellular material with four different length scale ratios
are shown in fig. 8 with `/a = [0.01, 0.1, 1, 10]. In contrast to the results from the fully
homogeneous material cell, the presence of the circular pore introduces scattering effects inside
each cell and the composite shows much more complicated elastodynamic behavior. Most
importantly, however, the dispersion curves become more regular with increased `/a and partial
bandgaps open up along the ΓM and XΓ directions, especially for `/a = 1 and `/a = 10. This
type of band structure is not observed for classical elastodynamic cells with a similar geometric
periodicity, which would exhibit behavior close to that obtained here with `/a = 0.01. In fact,
as `/a→ 0, C-CST theory recovers the classical result.
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X

Figure 8. Dispersion for a cellular material with circular pores for varying length scales,
`/a = [0.01, 0.1, 1, 10].

Furthermore, it is important to note that this interesting band structure is obtained with a
consistent continuum mechanics formulation, which requires only a single additional material
parameter, `, beyond those needed in the classical elastic case. When this intrinsic length scale
is on the order of the hole diameter, the dispersive SV wave has a fundamental group velocity
for the cell with dimension 2d approximately equal to the group (and phase) velocity of the
non-dispersive P wave, which allows the SV and P branches to follow a similar path, causing
band gaps to open. This behavior, which is not seen in classical elastodynamics, occurs in the
regions near to where the two branches intersect in fig. 2. Consequently, under C-CST, these
band gaps will originate whenever the size of the cellular structure is tuned to the material
length scale, a potentially significant phenomenon that has not been recognized previously.
With further tuning of the porosity level and cell size, it may be possible to achieve even a
complete bandgap at relatively low non-dimensional frequency Ω.
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7 Conclusions

The present work incorporates several innovative aspects. First of all, we have developed a
novel frequency domain correlated action principle for the consistent couple stress theory (C-
CST) of Hadjesfandiari and Dargush (2011) and used that to extend the Lagrange multiplier
finite element algorithm of Darrall et al. (2014) to study periodic cellular materials through
Floquet-Bloch theory from solid state physics. Particularly, we have addressed the imposition
of extended Bloch boundary conditions for this material model where in addition to force
tractions and displacements there are also couple tractions and rotations. Secondly, we also
discussed numerical aspects related to the solution of the wavenumber dependent generalized
eigenvalue problem resulting from the imposition of the Bloch periodic boundary conditions,
overcoming complications arising from the inclusion of Lagrange multipliers and a non-positive
definite mass matrix. The implementation was shown to give accurate results for homogeneous
and porous unit cells and for varying couple stress material length-scale parameters.

The analysis of the first cell was used mainly to test the correctness of our implementation as this
material has a closed-form dispersion relation. The algorithm was shown to correctly capture
the non-dispersive P-wave as well as the dispersive SV-wave. This analysis was complemented
by a convergence analysis with four different meshes of increasing refinement for the material
cell. The observed convergence rate shows that the Lagrange multiplier algorithm is effective in
maintaining continuity by imposing the newly introduced kinematic constraint implicit in the
mean curvature tensor definition. As the final contribution, we have discovered the interesting
bandgap structure of a material cell with a circular pore embedded in a homogeneous matrix,
which reveals the appearance of bandgaps introduced by the kinematic features of C-CST and
the dispersive behavior of the SV-waves defined in terms of the microstructural length scale
parameter.

From a general perspective, C-CST is a true size-dependent continuum theory, which is in-
tended here for periodic elastic material cells at scales for which a continuum representation
is appropriate. From the results shown in the paper, C-CST becomes important when the size
of the cell in on the order of the intrinsic length scale parameter or smaller. For larger cells,
the classical theory can be used instead. On the other hand, micropolar theory disconnects the
rotational field from the displacements, which can lead to approximations that may or may not
be physical.

A Explicit form of the finite element interpolators in
the C-CST solid

In the case of isotropic materials under plane strain idealizations, we have the following equa-
tions

(λ+ 2µ)

(
d2ux
dx2

+
d2uy
dydx

)
− µ

(
d2uy
dydx

− d2ux
dy2

)
− η

(
d4ux
dy4

+
d4ux
dy2dx2

− d4uy
dy3dx

− d4uy
dydx3

)
= −ρω2ux

(λ+ 2µ)

(
d2uy
dy2

+
d2ux
dydx

)
− µ

(
d2ux
dydx

− d2uy
dx2

)
− η

(
d4uy
dx4

− d4ux
dy3dx

− d4ux
dydx3

+
d4uy
dy2dx2

)
= −ρω2uy
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We have the following explicit forms for the interpolation matrices in two dimensions (Bathe
(1995)):

uN
Q =θ NQ =sN

Q =

[
· · · NQ 0 · · ·
· · · 0 NQ · · ·

]
, eB =

· · ·
∂NQ

∂x
0 · · ·

· · · 0 ∂NQ

∂x
· · ·

· · · ∂NQ

∂y
∂NQ

∂x
· · ·

 ,
κB =

[
· · · − ∂N

Q

∂y
· · ·

· · · ∂NQ

∂x
· · ·

]
, ∇B =

[
· · · − ∂N

Q

∂y
∂NQ

∂x
· · ·
]
.

an the following constitutive tensors in Voigt notation

C =
E(1− ν)

(1 + ν)(1− 2ν)

 1 ν
1−ν 0

ν
1−ν 1 0

0 0 1−2ν
2(1−ν)

 , D = 4η

[
1 0
0 1

]
.
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Nicolás Guaŕın-Zapata and Juan Gomez. Evaluation of the spectral finite element method with
the theory of phononic crystals. Journal of Computational Acoustics, 23(02):1550004, 2015.
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