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Abstract: The dispersion of waves in helicoidal layered composites is investi-

gated using propagation matrices and the Bloch’s theorem to represent the layered

nature and periodicity of the material, respectively. Dispersion relations are found

solving the resulting eigenvalue problems. Concrete numerical investigations are

made for a collection of transversely isotropic materials. The influence of the an-

isotropy (or directionality) of the constituent materials for each layer is presented

in a qualitative and quantitative fashion. Dispersion curves are presented for some

of these materials, and for different helicoidal configurations. We determined the

size of the first bandgap for different anisotropy levels, showing that the most im-

portant parameter for shear wave filtering is the ratio of elastic constants C44/C66,

and thus the anisotropy of the S waves in each layer is more interesting than the

anisotropy for quasi–S and quasi–P ones. Considering the results, we can design

for the appearance and size of the bandgaps by careful selection of the materials

that constitute the layers of the composites.

Keywords:  Fiber  reinforced  composites,  Dispersion,  Wave  propagation,
Bandgaps, Helicoidal composites, Biomimetics 

* Preprint of an article published in Journal of the Mechanics and Physics of Solids available at 
https://doi.org/10.1016/j.jmps.2019.07.003 and distributed under a CC-BY-NC-ND license.

† Corresponding author: zavattie@purdue.edu (P.D. Zavattieri).

https://www.sciencedirect.com/journal/journal-of-the-mechanics-and-physics-of-solids
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jmps.2019.07.003


1. Introduction

It is well known that the overall behavior of heterogeneous materials is determined by

mechanical and geometric properties of the constitutive microstructural features. This has

impacted current guidelines in materials design which are not just based on changing the

properties of the different phases but also on modifying its base architecture. Hence, the

mechanical behavior of composite materials can be tailored by designing microstructures

that alternate stiff and flexible constituents combined with well–designed architectures.

Recent advances in materials fabrication technology and additive manufacturing have al-

lowed the realization of materials with controlled architectures enabling new properties

and functionalities  (Babaee  et  al.,  2013;  Ge et  al.,  2013;  Lin  et  al.,  2014;  Celli  and

Gonella, 2015;  Porter et al., 2017; Slesarenko et al., 2017; Jasiuk et al., 2018; Akbari et

al., 2018, Liang et al. 2018).

Currently, there is a strong interest in the research community to expand the material

space  by  exploring  novel  microstructural  architectures  that  take  advantage  of  the  re-

sponse of independent phases (Ashby and Bréchet, 2003; Brechet and Embury, 2013).

Two interesting examples correspond to transversely isotropic materials and helicoidal

composites. Transversely isotropic materials are widely applied in many different fields

like geophysics, crystal acoustics and composites (Backus, 1962; Musgrave, 1970; Nye,

1985; Slawinski, 2010; Dvorak, 2013). Among many interesting properties, these materi-

als exhibit direction-dependent phase speed. Similarly, helicoidal composites have been

shown to exhibit shear wave filtering capabilities by virtue of its periodic arrangement

(Guarín–Zapata et al., 2015). Previous studies have also found, that layered composites in

addition to wave filtering (Guarín–Zapata et al., 2015), also exhibit negative refraction

(Willis, 2015) and near omnidirectional high-pass filtering (Srivastava, 2016). In particu-

lar, it was shown by Guarín–Zapata et al. (2015) that the extraordinary absorbing energy

capabilities existing in the dactyl club of stomatopods can be partially attributed to the

bouligand–like (helicoidal) structure present in its material microstructure. These find-

ings, together with the independent behavior of the different phases, suggest that such re-

markable energy absorption capabilities can be improved through optimal combinations

of the base materials used in the composite, in addition to variations in the geometric



properties defining the material cell. Although helicoidal composites and transversely iso-

tropic materials have been studied extensively, its combined effect from a wave propaga-

tion point of view has not been fully investigated. This work is devoted to the exploration

of the band structure of biomimetic helicoidal composites, like those found in the dactyl

club of stomatopods, which are formed by an arrangement of stacked transversely iso-

tropic layers. Such multilayer arrangements are a common motif in nature (Saheb et al.,

1999) and in several engineered materials (Jones, 1975; Gibson, 2011).

In fact, many organisms are recognized for their capacity to produce materials with out-

standing responses through a hierarchically–organized assembly of simple constituents

(Wegst and Ashby, 2004; Barthelat, 2007; Meyers et al., 2013). Some of these compo-

nents are fibrous, gradient, layered, tubular, cellular, suture, overlapping and helicoidal

structures (Naleway et al., 2015; Naleway et al., 2016). In particular, helicoidal compos-

ites are found frequently and have been identified as microstructural features in a variety

of species, such as fish scales (Zimmermann et al., 2013), exoskeletons of beetles (Cheng

et al., 2009), crabs (Chen et al., 2008), lobsters (Al-Sawalmih et al., 2008), dactyl clubs

of stomatopods (Weaver et al., 2012; Guarín–Zapata et al., 2015; Yaraghi et al., 2016,

Grunenfelder et al. 2018.), and mammalian bone collagen (Yamamoto et al., 2012). In all

of these works, the general finding is that the presence of helicoidal arrangements can

lead to an increase in toughness (Grunenfelder et al., 2014; Suksangpanya et al., 2017,

2018) and filtering in shear waves (Guarín–Zapata et al., 2015).

Despite the relatively wide research efforts in the field of structural arrangements in bio-

logical materials, there are only a few works dealing with its characterization from the

wave propagation perspective.  The characterization of these materials  under traveling

mechanical perturbations can be conducted using numerical methods. For this purpose

helicoidal composites can be modeled as periodic materials (or phononic crystals) where

the unit of repetition is comprised of multiple layers exhibiting a 180° rotation resulting

also  in  a  periodic  variation  in  the  mechanical  properties.  Under  these  assumptions,

phononic crystals are known to exhibit bandgaps, i.e., ranges of frequency where waves

cannot propagate (Brillouin, 2003; Deymier, 2013). The structure analysis and determina-

tion of the resulting bandgaps for a specific material model can be achieved by nowadays



standard  methods  based  upon  Bloch's  theorem (Kittel  and  McEuen,  1986;  Brillouin,

2003) and using as primary model that of a single fundamental material cell.

On the other hand, the idea of transverse isotropy has been used to model the overall be-

havior of materials reinforced by fibers aligned in the same direction, both in engineering

and biological materials (Dvorak, 2013; Cheng et al., 2008, 2009; Cheng, 2010; Nikolov

et al. 2010, 2011, Liu and Huang, 2012, Astaneh and Guddati, 2017, Liang 2018, Thierry,

2018). Wave propagation in that class of materials is anisotropic, or directional, with the

phase speed of the perturbation dependent upon the propagation direction. Although this

is a well-known fact, we examine how the directionality effect modifies the wave filter-

ing capability of helicoidal composites. Particularly, we  study the dispersion of waves

propagating in helicoidal composites where the constituent materials are transversely iso-

tropic. The analysis  is motivated by the remarkable wave absorption capabilities identi-

fied in the dactyl club of stomatopods and attributed partially to the helicoidal composite

nature of its microstructure, and specifically to its periodic arrangement. As was con-

cluded from previous investigations, the size of the bandgap (controlling the fraction of

absorbed energy in the material), was a function of the pitch angle in the layered system.

Here, we focus on the properties of the transversely isotropic base materials and evaluate

its impact on the bandgap formation.

In the first part of the paper, we examine the wave directionality effect of transversely

isotropic materials starting from standard expressions relating phase speed to propagation

direction. The resulting expressions, which are also an equivalent representation of the

constitutive response of the material, are subsequently presented in the form of phase-

speed surfaces highlighting the directionality effect for the different modes. The section

concerning transversely isotropic materials concludes with the selection of a quantitative

measure or index to objectively describe the level of anisotropy in a given transversely

isotropic material. This index is then used to comparatively describe a database of natural

and man-made transversely isotropic materials. The second part of the paper focuses on

the  dispersion  analysis  of  helicoidal  composites  whose  constituent  material  is  trans-

versely isotropic. As a performance descriptor of the different combinations of material

parameters and cell properties, we selected the gap–midgap ratio. The dispersion analysis



was conducted using the propagator matrix approach together with Bloch periodic bound-

ary conditions. To better quantify the performance of the resulting composites, we mea-

sure the amount of filtered energy assuming the material is excited with an input in the

form of a square pulse. The final part of the paper presents some conclusions and recom-

mendations for further work.

2. Wave directionality of transversely isotropic materials

There are two salient features in transversely isotropic media. First, the shear (S), quasi-

shear (qS) and quasi-compressional (qP) propagation modes existing in these materials

exhibit direction dependent phase velocities. Second, different combinations of the values

of the constitutive parameters produce substantially different directional behavior. Such

anisotropic wave propagation response creates the need for objective representations of

the level of anisotropy associated with a specific material whenever the analysis is in-

tended to identify wave propagation effective materials. Here, we first review some fun-

damental  descriptors  of the dispersive behavior  of  transversely isotropic media based

upon a qualitative characterization of the constitutive tensor. The analysis is then comple-

mented by a brief survey of quantitative measures or indices leading to the selection of an

objective, mode-independent anisotropy index (AI). The identified qualitative and quanti-

tative descriptors are then applied to a selected database of commonly used transversely

isotropic materials. From this database, we further select a man-made and a natural mate-

rial to be used as prototypes, and to use them in helicoidal architectures in order to ex-

plore wave attenuation improvement.

2.1. Transversely isotropic materials

Transversely  isotropic  materials  possess  mechanical  properties  which  are  symmetric

about an axis while keeping isotropy inside the plane orthogonal to this axis. By contrast

with purely isotropic materials, this transverse isotropy results in the appearance of shear

(S), quasi-shear (qS) and quasi-compressional (qP) propagation modes whose phase ve-

locities become direction dependent.

To contextualize transversely isotropic materials within general anisotropic behavior, we

schematized (Figure 1) different symmetry classes found in elastic materials.  The de-



scription is organized hierarchically from top to bottom, specifying the number of elastic

constants required in each constitutive tensor. The arrows indicate subgroups of a given

class of symmetry. The case of a transversely isotropic material (with 5 constitutive pa-

rameters), is shown in the second row from the bottom. This structure corresponds to a

cylinder whose axis of revolution specifies the axis of symmetry in the constitutive rela-

tion (Moakher, 2009). For completeness, we also show in the last row the simplest case

of isotropic media corresponding to a sphere.

Figure 1.  Schematic for classes of material symmetry with planes of symmetry indicated by dashed
lines. The emerging arrows represent different subgroups, while the number inside each box indicates the
number of independent constants for each material symmetry. Based on (Moakher, 2009)

In wave propagation analysis, the constitutive response is better described in terms of dis-

persion relations that indicate phase velocities. We use standard computations, as in Car-

cione (2001), to arrive at the following dispersive description of an arbitrary transversely

isotropic material for the qP, qS and S modes:

vqP (θ )=√C11sin
2 (θ )+C33cos

2 (θ )+C44+√ M (θ )

2 ρ
,

vqS (θ )=√C11 sin
2 (θ )+C33 cos

2 (θ )+C44−√M (θ )

2 ρ
,

v S (θ )=√C 66sin
2 (θ )+C44 cos

2 (θ )

ρ
,

(1)

with



M (θ )=[ (C 11−C44 ) sin
2 (θ )− (C33 −C 44 )cos

2 (θ ) ]
2
+(C 13+C44 ) sin

2 (2θ ) .

In Equation (1) the involved parameters correspond to those indicated in Figure 1 and

defining the elastic stiffness tensor (CIJ) as per Equation (2)

C=[
C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66

] , (2)

with C66 = (C11 – C12)/2.

The material parameters are expected to play a fundamental role in the dispersive behav-

ior  of the material  as clearly observed from the dispersion equations.  These relations

combine the angle of propagation θ measured with respect to the axis of symmetry, and

the 5 material constants appearing in (2). In addition, there are also two other relevant as-

pects of these relations. First, the purely shear mode has the shape of an ellipsoid with

semi-axes √C66 / ρ  and √C44 /ρ , which implies that there is a limited degree of di-

rectional behavior for this  mode. Second,  the qP and qS modes are strongly coupled

through the term M(θ) and different  combinations of the material parameters may pro-

duce strongly different directional behavior.  This directional dependence of the phase

speed is clarified in Figure 2, which shows the directionality curve and phase speed sur-

face for magnesium. The difference in the level of anisotropy in the purely shear and the

qS and qP modes is evident. In this material the particular values of the elastic parameters

are such that the directional effect is stronger in the S and qS modes, while the qP mode

remains nearly isotropic (i.e., approaching a sphere). The directional dependence is also

shown by the directionality curve for the different modes (shown in the left part of the

figure), where the propagation direction is described with respect to the axis of symmetry.

Additional cases corresponding to different transversely isotropic materials are included

in Table 1 of Appendix C.



Figure 2. (Left)  Directionality  of  wave modes for  a  transversely isotropic material.  The angle  θ is
measured with respect to the axis of symmetry. (Right) Phase speed for the different wave modes for
magnesium. A comparison of the modes is presented in the bottom-left.

The directionality curves and the phase speed surfaces showing the ability of the material

to propagate mechanical waves in infinite directions can be used as a qualitative descrip-

tion of the level of anisotropy in transversely isotropic materials. In the current work, we

have used this idea to compare a database of commonly encountered man-made and natu-

ral transversely isotropic materials. The comparison is tabulated in Figure 3 in which the

absolute values for the different speeds are normalized by the maximum for each material

to produce an objective qualitative comparison across materials. This qualitative descrip-

tion of anisotropy can, therefore, be used as a first-hand guide in the selection of aniso-

tropic materials.

We observe that in materials like Glass-epoxy, there is a marked directional behavior in

the qS mode, while the qP mode remains closely isotropic. However, there is a trend for

these modes to propagate at larger speeds along the horizontal direction.



Figure 3. Directionality  curves  for  different  transversely isotropic materials.  Blue represents  the qP
wave, green represents the qS wave, and red represents the S wave.

2.2. Wave directionality and Anisotropy Index

From an intuitive perspective, it is natural to expect that materials with stronger anisot-

ropy, or equivalently, with a stronger impedance contrast will exhibit larger bandgaps. In

this section, we introduce a quantitative description of the level of anisotropy associated

with a given material in order to establish an objective criterion for its selection. For this

purpose, we need to consider an objective index or measure of the level of anisotropy that

takes into account the different phases in these materials. 

The simplest quantitative measure of anisotropy is Zener’s ratio (Zener, 1948), which is a

dimensionless number used to characterize the anisotropy for cubic crystals. Intuitively, it

is the ratio between the shear modulus for the cubic material and its isotropic counterpart.

In terms of the constitutive constants defined in Equation (2), this ratio can be written like

ar=
2 (1+υ ) G

E
≡

2C44

C11−C12

=
C 44

C 66
. (3)



Zener ratio takes the value of 1 when the material is isotropic and decreases in the direc-

tion of increasing anisotropy. Although Zener's ratio completely quantifies anisotropy for

cubic materials, it fails for other material symmetries such as transverse isotropy, which

are described by five material parameters.

Kanit et al. (2006) extended Zener's ratio for more general anisotropic materials while

keeping a form resembling that in Zener's (Kanit et al., 2006). In this alternative form the

terms are now replaced by different averages of the moduli as follows:

agen=
2Y 44

Y 11−Y 12
, (4)

with

Y 11=
C11+C22+C33

3
,Y 12=

C 12+C23+C13

3
,

Y 44=
C44+C55+C 66

3
.

(5)

As stated in (5), Y11 is the average of the diagonal terms in the stiffness tensor related to

axial stresses, Y12 is the average of the off-diagonal terms in the stiffness tensor related to

axial stresses, and Y44 is the average of the diagonal terms related to the shear stresses.

This ratio indeed quantifies anisotropy, but it fails to differentiate between different prop-

agation modes for waves.

Casadei and Rimoli (2013) introduced a third anisotropy index (AI) considering each

propagation mode and obtained from the corresponding dispersion relation separately.

The index is computed as

AI=√ 1
2π

∫
0

2 π

( c (θ )− c̄
c̄ )

2

dθ  , (6)

where c̄  is the average speed for all the angles, and c(θ) is the speed for a direction

forming an angle θ with the axis of symmetry. This measure is, essentially, the standard

deviation for each wave propagation mode.

In the case of S polarization, the integral for the average speed becomes

c̄S=
2
π √C44

ρ
E(1−

C66

C44
) , (7)



resulting in the following particular form for the anisotropy index AI

AI S=√ 1
8 [

π2
(ar+1 )

ar E2( ar−1
ar

)
−8] , (8)

where ar corresponds to Zener’s ratio (see Eq. 3), and E(•) is the complete elliptic integral

of the second kind (Olver and Saunders, 2016). For the qS and qP modes the integrals do

not have a closed form and need to be computed numerically.

Figure 4 compares the materials listed in Table 1 in terms of its anisotropy index as per

Eq. 6. The directionality curve for each material has also been superimposed for clarity.

Common composites like carbon-epoxy or graphite-epoxy present high anisotropy in the

qP mode, but not as high for the qS and S modes. On the other hand, in materials like

magnesium and thallium, the larger anisotropy is related to the S mode.

Figure  4. Anisotropy  index  from  Casadei  and  Rimoli  (2013)  for  different  transversely  isotropic
materials. Blue represents the qP wave, green represents the qS wave and red represents the S wave.
Directionality curves are superimposed for each material to add a qualitative and more intuitive way of
comparison.



2.3. Constituent materials for potential helicoidal architecture

The characterization of transversely isotropic materials in terms of the anisotropy index

was used as the basis for the selection of prototype materials to be used in the helicoidal

architecture. We selected material 1 to share its properties with carbon-epoxy with a mod-

ulus  and  mass  density  corresponding  to  C11 = 12.372 GPa,  C12 = 6.147 GPa,

C13 = 6.185 GPa, C33 = 146.302 GPa, ρ = 1900 kg/m3, and material 2 with base properties

corresponding  to  those  in  magnesium  with  specific  values  of  C11 = 59.2 GPa,

C12 = 25.95 GPa,  C13 = 21.55 GPa,  C33 = 61.4 GPa,  ρ = 1738 kg/m3.  Carbon-epoxy  was

selected due to its man-made origin while magnesium had merit in the fact that its direc-

tionality curves exhibit higher anisotropies for S and qS waves.

To study the directionality in these materials, we varied the C44 component of the stiffness

tensor, while keeping the other components constant.  Figures 5 and 6 present the varia-

tion in the anisotropy index (AI) for different ratios C44/C66 = 2C44/(C11 – C12) in materials

1 and 2, respectively. 

Figure 5. Anisotropy index for Material 1 while the C44 component changes with the other components
remaining the same.  Blue  represents  the quasi–P wave,  green  represents  the  quasi–S wave and red
represents the S wave. In the top we show the directionality curves as a qualitative comparison.



Figure 6. Anisotropy index for Material 2 while the C44 component changes with the other components
remaining the same.  Blue  represents  the quasi–P wave,  green  represents  the  quasi–S wave and red
represents the S wave. In the top we show the directionality curves as a qualitative comparison.

Interestingly, in material 1, with prototype given by carbon-epoxy, the anisotropy of the

qP mode changes in a direction opposite to the S and qS modes. Apparently, this behavior

is only slightly observed in material 2, however it is important to notice that the anisot-

ropy index for both materials is exactly the same since its only dependence is on C44/C66,

as shown by equation (13). Anisotropy for the qS and qP modes depends on other mate-

rial constants. Nevertheless, the same trends can be seen, i.e., the anisotropy index for qS

waves increases and reaches a maximum value, while the anisotropy index for the qP

waves decreases.

3. A bioinspired helicoidal composite with transverse isotropy

The analysis conducted in the previous section based upon  dispersion curves suggests

that the anisotropy level for the S and qS modes is highly sensitive to changes in the

C44/C66 ratio. In this section, we assume that materials 1 and 2 are used as base materials

in the fabrication of helicoidal composites. As described previously, helicoidal architec-

tures are known to exhibit shear wave filtering capabilities and interest now lies in exam-

ining  the  outcome  from  a  combination  of  transverse  isotropy  with  a  helicoidal  mi-

crostructure. This idea is inspired by results of previous studies aimed at identifying the

mechanisms responsible for the remarkable energy dissipation capabilities present in the



dactyl club from the Stomatopod. As shown in Guarín–Zapata et al. (2015) its helicoidal

microstructure results in shear wave filtering over specific frequency ranges or bandgaps.

In this work, we extend upon this idea and explore the impact of producing helicoidal

composites whose base materials are transversely isotropic with varying C44/C66 ratios. In

this analysis, performance is characterized in terms of the band structure of the resulting

material  which  is  determined  after  assuming  a  unit  cell  subjected  to  Bloch  periodic

boundary conditions. For each material type, we then modify the C44/C66 ratio and mea-

sure the size of the first bandgap in the corresponding structure diagram. In addition, we

provide details about the layered model and the band structure determination.

3.1. Helicoidal composite modeling

A composite with the helicoidal architecture consists of individual layers made of trans-

versely isotropic materials that are piled up in a way that the symmetry axis is rotated

from a layer to the next one by a pitch angle, α, in a helicoidal manner. Each layer is con-

sidered to behave elastically and to have thickness d. The material is considered to be pe-

riodic in the z-direction, and it can be fully described by a single unit cell. Each unit cell

contains N layers with a total thickness D = N⋅d; in that way, the first and last layer in a

unit cell represents a complete rotation of 180°. Figure 7 depicts a schematic of the heli-

coidal composite and its unit cell. The rotation between two consecutive layers affects the

constitutive tensor in equation (B1), which translates in an impedance contrast for shear

waves but does not have an effect in longitudinal ones.  Similarly, for the specific case of

composites,  the stiffness mismatch between the fibers and the matrix and the fiber vol-

ume fraction controls the anisotropy, and therefore the directionality of the composite.



Figure 7: Schematic  of  the  helicoidal  composite  (adapted  from Guarin-Zapata  et  al.  2015).  The
material repeats periodically in the  z direction with period  D. The  unit cell consists of  individual
layers with unidirectional fibers that are rotated by an angle α with respect to the previous one. Thus,
the  orientation  of  the  nth layer  is  given  by   αn = (n − 1)  α.  Each  of  the  layers  is  modeled  as  a
transversely isotropic material of thickness d.

As the composite material is organized in a series of stacked layers, we can express the

solution through a product of propagation matrices (Gilbert and Backus, 1966). This al-

lows us to transform the equations of motion into a system of Ordinary Differential Equa-

tions (ODEs) (Yang et al., 1991; Guarín–Zapata et al, 2015). Furthermore, the utilization

of Bloch’s theorem translates the ODE problem into an eigenvalue one (Deymier, 2013;

Hussein et al., 2014):

[Q(ω)]V= e−ikDV, (9)

the form of the matrix [Q(ω)] is presented in appendix B.

Solving this eigenvalue problem for a series of frequencies (ω) enables us to construct the

dispersion relations and, as a consequence, the overall behavior of the helicoidal material

(Kittel and McEuen, 1986; Brillouin, 2003). The magnitude of the eigenvalues, e-ikD, in-

forms  if  a  wave  mode  propagates  (|e−ikD| = 1)  or  not,  meaning  there  is  a  bandgap  (|

e−ikD| ≠ 1). In the case of non-propagating waves, this magnitude can represent the decay-

ing factor between two consecutive cells (Hochstadt, 1975).



3.2.  Bandgap size

To qualify the performance of the combinations of the C44/C66 ratio with the different geo-

metric parameters of the unit cell, we use the size of the first bandgap as a figure of merit.

Nevertheless, since the first band gap might appear at higher or lower frequencies, it is

customary to use the gap–midgap ratio (Joannopoulos et al., 2011) as it provides a com-

parison that is not subject to the scaling given by changes in the material constants. It is

explicitly written as:

Δω
ωc

≡
ω1 −ω0

ωc
, (10)

with  the  involved  parameters  illustrated  in  Figure  8.  Thus,  we  expect  a  specific

combination of material and geometric parameters to be considered highly effective if it

results in a wider bandgap.

Figure 8. Schematic of the first bandgap, and its size. The gap-midgap ratio results after dividing the gap
size by its central value as per Equation (14).

As indicated previously, we varied the C44 component of the stiffness tensor, while keep-

ing the other components constant. This increase in the C44/C66 ratio leads to an increase

in the size of the bandgaps as shown in Figures 9 and 10, where we plotted the size of the

bandgap as a function of C44/C66 for helicoidal composites with different pitch angles (α).

As expected, the introduction of transversely isotropic materials in the helicoidal archi-

tecture increases the size of the bandgap. This result can be verified after comparing the



size of the bandgap for a quasi-isotropic material (also shown in the figures) with those

corresponding  to  the  current  prototypes.  Moreover,  the  size  of  the  bandgap  remains

nearly constant in the quasi-isotropic (quasi-iso) case while it shows significant incre-

ments for the transversely isotropic materials. At the same time, it is observed that how

this gain in bandgap size is stronger at small values of the pitch angle as revealed by the

curves corresponding to pitch angles of 45° and below. For different C44/C66 values, the

qualitative shape of the different propagation modes undergoes small sudden variations as

it can be observed on the upper part of Figures 9 and 10. The sequence of images shows

how the wave propagation modes can have a different number of inflection points and

cusps depending on the ratio C44/C66 (Payton 1983).

Figure 9. Size of the first bandgap vs. C44/C66 ratio for helicoidal composites made with Material 1 with
different pitch angles (α). For comparison we also computed the values for quasi-isotropic composites
(Quasi–iso).



Figure 10. Size of the first bandgap vs. C44/C66 ratio for helicoidal composites made with Material 2 with
different pitch angles (α). For comparison we also computed the values for quasi-isotropic composites
(Quasi–iso).

To understand the influence of varying the mechanical properties in transversely isotropic

material in helicoidal architectures in dynamic impact problems, we evaluated the filter-

ing capabilities of the material for impact events represented by a square pulse. This is

measured using the ratio between the transmitted energy and the total energy of the pulse

(Guarín–Zapata et al., 2015). The duration of the pulse is C11Δt/ρd = 1, and the selection

of a square shape in the time domain translates into a wide Fourier spectrum involving

higher  harmonics.  The  transmitted  energy  is  the  one  that  does  not  overlap  with  the

bandgap. In Figure 11, this is the region outside the range ω0–ω1, and it is described by

the following expression:

Etrans=
2
K [∫0

ω0

|σ (ω )|
2
dω+∫

ω1

∞

|σ (ω)|
2
dω] (11)

where K is a material constant that guarantees that the units are consistent.



Figure 11.  Schematic for the frequency ranges of transmitted and filtered energy. The shaded region
depicts the transmitted energy while the range between ω0 and ω1 is the filtered energy.

As mentioned above, we compared the  ratio between the transmitted energy (Etrans) and

the total energy (Etotal), denoted by η, which is given by :

η=
E trans

Etotal
(12)

Figures 12 and 13 present the fraction of transmitted energy for the two base materials

studied when changing the  C44/C66 ratio for helicoidal composites with different pitch

angles (α), and they are compared with the case of a quasi-isotropic composite.



Figure 12. Fraction of transmitted energy  vs.  C44/C66 for helicoidal composites made with Material 1
with  different  pitch  angles  (α).  For  comparison  we  also  computed  the  values  for  quasi-isotropic
composites (Quasi–iso).

Figure 13. Fraction of transmitted energy  vs.  C44/C66 for helicoidal composites made with Material 2
with  different  pitch  angles  (α).  For  comparison  we  also  computed  the  values  for  quasi-isotropic
composites (Quasi–iso).



These results lead us to conclude that we can control the size of bandgaps for shear waves

by controlling the value of the component C44 of the stiffness tensor. To achieve this goal,

we would need to design the material with a specific constitutive tensor in mind, i.e., find

the  microstructure  that  allows  a  ratio  C44/C66  that  gives  us  the  desired  dispersion

characteristics—like the gap–midgap ratio. The problem of obtaining an elastic material

with a set of desired parameters has been studied from a theoretical point of view (Milton

and Cherkaev, 1995), and some interesting results have been achieved (Norris and Nagy,

2011). Besides the theoretical approach to this inverse problem, there have been different

topological optimization approaches to the design of microstructures to obtain the desired

properties of a material (Bendsoe and Sigmund, 2013; Liu et al.; 2016).

4. Conclusions

We studied the dispersion of waves propagating in helicoidal layered composites using

the propagation matrix formalism and the Bloch theorem to represent periodicity of the

material. We considered the anisotropic behavior of a collection of transversely isotropic

materials, and presented a qualitative and quantitative way to represent their anisotropy

(directionality). From this collection of materials, we selected carbon-epoxy and magne-

sium, a man-made material and a natural occurring material with anisotropic behavior, as

base materials to analyze the effect of modifying the C44 component of the stiffness tensor

in wave dispersion. We found, for hypothetical materials that share the rest of their elastic

properties with carbon–epoxy or magnesium, that the directionality of the S wave in-

creases along with the ratio  C44/C66. We analyzed, as well, the wave dispersion in heli-

coidal layered composites constituted of these hypothetical transversely isotropic materi-

als, i.e., materials with different anisotropy levels. We observed that the normalized size

of the first bandgap grows with increasing  C44/C66, and that is largest for the smallest

pitch angle considered (5 degrees). The results show that the most important parameter

for shear wave filtering is the ratio of the constants C44/C66. Hence, in the design of lay-

ered composites with desired appearance and size of bandgaps, the anisotropy of the S

waves in each layer is more interesting than the anisotropy for quasi-S and quasi-P ones.
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Appendix A. Wave propagation in materials with transverse isotropy

Throughout this section, Einstein notation is used. Hence, repeated indices imply a sum

and a comma denotes differentiation.

Newton's second law for an elastic solid without body forces gives the following equation

of motion:

σ ij,i=ρ
∂2 u j

∂t 2 , (A1)

with uj,  σij and ρ the displacement, stress tensor and density, respectively.  Furthermore,

the material is considered to satisfy the Hooke’s law as constitutive relationship,

σij = cijpqup,q , (A2)
where  cijpq is the stiffness tensor that in the case of transversely isotropic materials is

formed with 5 different parameters (Payton, 1983). . We assume a solution in the form of

a plane wave:

uj =Ujexp[ik(nrxr − vpt)] , (A3)
where k is the wavenumber, nr is a unit vector in the direction of propagation, and vp is

the phase velocity. Assuming a harmonic behavior, plugging (A2) and (A3) to (A1) gives

the Christoffel wave equation (Buchwald, 1959; Auld, 1973; Carcione, 2001),

[Γij − ρ vp²δij ]Uj = 0 , (A4)
where Γij = cijklnknl  is the Christoffel stiffness tensor, and δij is the Kronecker delta. Since

we are not interested in null solutions, thus we force the determinant to be zero,

det[Γij − ρ vp²δij ] = 0 . (A5)



The  solutions  of  this  characteristic  polynomial  give  rise  to  the  different  modes  of

propagation in the medium (Auld, 1973; Carcione, 2001). One of the propagation modes

presents transverse polarization, while the other two present quasi-tranverse and quasi-

longitudinal polarizations. Equation (A5) depends on the direction of propagation. This

implies that the phase velocities depend on the direction of propagation of the wave.

Appendix B. Matrices for a single layer and for a unit cell

The propagation matrix [P] that relates the state vector between two consecutive layers is

given by:

[P ]=[
0 0 k x

−iC44

Δ
−i C45

Δ
0

0 0 0
−i C45

Δ
−i C55

Δ
0

k xC13

C33

k xC36

C33

0 0 0
− i
C33

A B 0 0 0
k xC13

C33

B M 0 0 0
k xC36

C33

0 0 iρ ω2 k x 0 0

] , (B1)

with

A=i [ ρ ω2−(C11−
C13C 13

C33
)kx

2] ,
(B2)

M=i [ ρ ω2 −(C66 −
C36C 36

C33
)k x

2] ,
(B3)

B=−i(C16−
C13C36

C33
)kx

2
,

(B4)

Δ=C44C55− C45
2 . (B5)

The matrix [Q(ω)] that presents geometric and material information of the composite is

given by:

[Q (ω) ]=e
id N [ PN (ω) ]e

idN − 1 [P N −1 (ω )]⋯e
id1 [ P1 (ω )] , (B6)



it should be noted that both the matrix [P] and the matrix [Q] depend on the frequency,

geometry and material properties.

Appendix C. Properties for some selected transversely isotropic 

materials

The following table presents material properties (stiffness coefficients and densities) for

several transversely isotropic materials (Payton, 1983; Nayfeh, 1995; Liu and Xi, 2001;

Wagner and Pruß, 2002; Freund and Suresh, 2004). The directionality curves for the list

are presented in Figure 3.

Table 1. Mechanical properties for the considered transversely isotropic materials

Material C11 (GPa) C12 (GPa) C13 (GPa) C33 (GPa) C44 (GPa)
Density
(kg/m3)

Apatite 167 13.1 66 140 66.3 3190

Beryllium 291.25 26.7 14 336.2 162.25 1850

Beryl 282 99.4 69.5 248 68.6 2640

Cadmium 115.9 41.05 41 51.2 19.95 8650

Cobalt 307 165 103 358.05 76.9 8900

Ice (257 K) 13.5 6.5 5.2 14.5 3.17 919

Hafnium 181 77 66 196.95 55.7 13310

Magnesium 59.2 25.95 21.55 61.4 39.05 1738

Rhenium 612 270 206 683 162 21200

Titanium 162.2 92 69 180.85 46.7 4506

Thallium 40.8 35.4 29 52.8 7.26 11850

Yttrium 77.9 29.2 20 76.9 24.31 4472

Zinc 163 32.6 50.05 61.5 38.95 7140

Graphite-epoxy 16.34 4.96 3.72 155.43 7.48 1600

Carbon-epoxy 12.372 6.147 6.185 146.302 4.795 1900

Glass-epoxy 13.475 7.259 6.033 42.001 3.414 2660

Zirconium 143.4 72.8 65.3 164.8 32 6520

ZnO 209.7 121.1 105.1 210.9 42.5 5606
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