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Abstract: Wave propagation was investigated in the Bouligand-like structure from within the 

dactyl club of the Stomatopod, a crustacean that is known to smash their heavily shelled preys 

with high accelerations.  We incorporate the layered nature in a unitary material cell through the 

propagator matrix formalism while the periodic nature of the material is considered via Bloch 

boundary conditions as applied in the theory of solid state physics. Our results show that these 

materials exhibit bandgaps at frequencies related to the stress pulse generated by the impact of 

the dactyl club to its prey, and therefore exhibiting wave filtering in addition to the already 

known mechanisms of macroscopic isotropic behavior and toughness. 

 

1. Introduction 

Many biological organisms are known for their ability to produce hierarchically arranged materials 

from simple components, resulting in structures that provide mechanical support, protection and 

mobility. These structures are used to perform a wide variety of functions ranging from structural 

support and protection to mobility and other basic life functions. All of this is done using only the 

minimum quantities of a limited selection of constituent materials [1–3], synthesized under mild 

conditions. The diversity and multifunctionality identified in these materials, combined with their 

robust mechanical properties [2] make them a rich source of inspiration for the design of new materials. 

One particular example of a natural material with impressive mechanical properties can be found in the 

dactyl club of stomatopods [1], [4–7]. The stomatopods (or mantis shrimps), are an ancient group of 

marine tropical and subtropical crustaceans that are, on average, 15 cm long but can reach lengths of 

nearly 40 cm. A distinct feature of stomatopods versus other crustaceans is the presence of a pair of 

thoracic appendages that are specifically adapted for close-range combat (See Fig. 1a, b). Stomatopods 

are divided into two groups, depending on the shape of these appendages: those that hunt by impaling 

their prey with spear-like structures (spearers), and those that smash them with a powerful blow from a 

heavily mineralized club (smashers) [5], [8–10]. The dactyls of spearers contain spiny appendages with 

barbed tips that prevent prey from slipping off. On the other hand, dactyls from smashers have a 

hammer-like structure[11] that can reach, upon impact, accelerations as high as 10400g and speeds 

close to 23 m/s, generating forces up to 1500 N [10]. This hammer-like composite structure can inflict 

considerable damage after impact against the wide variety of heavily mineralized biological structures 

present in its preys. In fact, this is reflected in its diet. Smashers, feed on armored animals such as 

snails, hermit crabs, clams and crabs, which they batter to pieces [11]. Despite these significant forces, 

the dactyl clubs are fracture-resistant and are able to tolerate thousands of such blows. This astounding 

capacity to tolerate stress waves generated from the impact of the dactyl club against its preys has 

prompted questions about the underlying mechanisms responsible for such a high strength to sustain 

dynamic loads [1], [7]. 
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Previous research, conducted by Weaver et al. [7] aimed at identifying the microstructural features 

of the dactyl club in stomatopods, have recognized its structure as a multiregional biological 

arrangement made of an external layer, called the impact region, supported by a striated and a periodic 

zones. These are described in Figure 1b-1e where we show a description of a transversal cross section 

of the dactyl club together with its microstructural features shown at increasing levels of resolution. In 

particular Fig. 1c shows a schematic representation of a cross section of the dactyl club where we have 

labeled the impact, periodic and striated regions as (I), (II) and (III) respectively. The impact and 

periodic regions are also observed in the optical micrograph of a polish cross section of the dactyl club 

(Fig. 1d). The layered nature is more evident in the periodic region. A closer examination reveals that 

this periodicity is related to its helicoidal arrangement (also known as Bouligand structure) of 

unidirectional chitin fibrils surrounded by amorphous mineral [7]. This structure is observed in the 

scanning electron microscope (SEM) image shown in Fig. 1e and in the idealized model (see Fig. 1f) 

where we introduce fibers mimicking such a helicoidal arrangement.  It should be noted that each line 

in Fig. 1d correspond to a complete 180o rotation of the fibers in Fig. 1e. While it is not clear from Fig. 

1d, the impact region also exhibits a similar arrangement of fibers. 

 

Figure 1: Hierarchical structure of the dactyl club of the stomatopod. a) Image of the smashing peacock mantis 

shrimp (Odontodactylus Scyllarus). b) Model of the dactyl club c) Schematic of a transverse section of the dactyl 

club highlighting the (I) Impact region (light blue) (II) Periodic region (pink, purple, orange) and (III) Striated 

region (green). d) Optical micrograph of a polished transverse section of the impact and periodic region, e) SEM 

micrograph of a fractured surface of the periodic region highlighting the helicoidal microstructure. f) Model of 

the Bouligand microstructure.  
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The nearly periodic nature of the microstructure in the dactyl club seems to suggest that the 

interaction between the microstructure and propagating stress waves can lead to phenomena that are 

common in phononic crystals and metamaterials, such as bandgaps and dispersion of waves [12–14]. 

As such, manipulating the microscopic structure and geometry of a crystal-like solid, the macroscopic 

behavior is changed and a media capable of molding and manipulating waves can be conceived [12–

16]. The field of phononic-crystals has some aspects in common with biological materials; e.g., the 

overall behavior is determined by the presence of microstructural features. Furthermore, the approach is 

not just one of changing the properties of the different phases but with the architecture 

(topology/geometry). As such, the aim of this paper is to explore the microstructural properties of the 

periodic and impact region of the dactyl club in stomatopods from the perspective of spatial periodicity 

and wave propagation properties in order to identify whether bandgaps and dispersion of waves could 

be one of the contributing mechanisms responsible for its remarkable impact tolerance capability.  

 

Phononic crystals are materials with a periodic repetition of a unit cell, which results in the 

periodicity of its mechanical properties, i.e., elastic moduli and density. The wave propagation in this 

case corresponds to an elastic disturbance [16], [17]. One of the main properties of a phononic crystal is 

the possibility of exhibiting band gaps, i.e., frequency ranges where waves are forbidden to 

propagate [16], [18].  The name of phononic crystals has been coined from the field of photonic crystals 

in optics, and both, phononic and photonic crystals can be studied using concepts extracted from the 

theory of solid-state physics. In particular, the use of Bloch’s theorem [18], [19] allows us to determine 

the material band gaps after studying a single unitary material cell. The differences between 

electronic/photonic/phononic crystal reside in the equations that are being solved: Schrödinger 

equation, Maxwell equation or Navier-Cauchy equations, for electronic, photonic and phononic 

crystals, respectively [16], [19], [20]. In all the cases, the media have properties exhibiting space 

periodicity. There is a wide variety of applications in the field of elastodynamics [16]. Hladky-Hennion 

and Decarpigny presented a study applying a finite element method (FEM) to periodic materials used as 

coatings to avoid detection of submarines by ultrasound waves [21]. Ruzzene et al. modeled 

honeycombs and re-entrant honeycombs (hexagons with inverted angles) to find the directionality of 

the material (that can be used as an acoustic filter) [22]. Wang et al. developed a material with tunable 

band gaps, controlling local instabilities in the microstructure [15]. 

The existence of helically stacked plies (or Bouligand structures) have already been noticed and 

investigated in terms of their microstructural features in a variety of other animals, such as fish 

scales [23], exoskeletons of beetles [24], crabs [25] and lobsters [26–29].  For instance, Sachs and co-

workers presented experimental measurements for lobster’s cuticle using digital image correlation, 

obtaining the behavior for the elastic and plastic regimes [27–29]. Nikolov and co-workers have studied 

the hierarchical composition of the cuticle in the exoskeleton of the American lobster [30–32] and 

showed that the level of anisotropy in the elastic properties of the cuticle is very high at the nano-scale. 

However, such anisotropy decreases monotonically moving to the higher scale and exhibiting almost 

isotropic elastic properties at the millimeter scale.  A similar result was reported in the exocuticles of 

beetles by Sun and Bhushan, who characterized the structure and mechanical properties of beetle wings 

and reported their lightweight nature; high strength; superhydrophobicity and structural coloration [33]. 

Zimmerman and co-workers showed that a Bouligand-type arrangement existing in Arapaima gigas fish 

scales can adapt to loads in different orientations by reorienting in response to different stresses [23].  

On the other hand, Bouligand structures have also been studied from a wave propagation point of view. 

For instance Vukusic and Sambles presented a natural photonic structure in hawkmoths exhibiting low-

reflectance suitable for stealth technology [34].  Campos-Fernández measured the reflection spectra of 

beetles and proposed a multilayered model to explain the variations in the obtained spectra [35], while 



4 

Zhang and To used a biomimetic multilayered model with a hierarchical layered structure to obtain 

broadband wave filtering in phononic crystals [36]. 

In this work we adopt a layered model for the unit cell in the periodic and impact regions of the 

dactyl club.  We first discuss the different length scales present in a typical impact pulse and, 

particularly, its relation with the microstructural features encountered in the dactyl club to justify our 

choice of a model based on a unitary material cell with rotated layers of a transverse isotropic material. 

For completeness we also describe briefly the wave equations for unbounded media leading to the form 

of the Christoffel wave equations [37–39] after considering propagating plane waves. The proposed 

model for the unitary cell is then analyzed with the combination of a propagator matrix approach, 

introduced by Yang et al [40], to study layered materials, together with the imposition of  Floquet-

Bloch periodic boundary conditions [18], [19]. From these combined analyses we determine dispersion 

relations, and particularly, frequency bandgaps. Subsequently, different assumed geometrical 

parameters of the unit cell which are compared with a stress pulse representative of a typical impact 

sustained by the stomatopod.  As a performance measure of the different microstructural configurations 

we introduce a scalar parameter quantifying the amount of transmitted energy through the different 

bandgaps. 

 

2. Modeling 

We now describe relevant assumptions and modeling aspects used in the study of the dynamical 

response of the material present in the dactyl club in the stomatopod.  We will focus in the response of a 

unitary material cell conformed by an arrangement of stacked layers of uniaxial fibers (see Figure 1f).  

Although such arrangements are quite common in composite materials [41], helicoidal configurations 

of uniaxial fibrils are unique of biological materials. One fundamental aspect in our analysis technique 

is the fact that when the ratio between the characteristic wavelength  of the input excitation to the 

intrinsic length scale l representative of the relevant microstructural features in the dactyl club (i.e., 

fiber diameter and intra-fiber distance) is large, each layer of uniaxial fibrils can be represented as a 

homogeneous transverse isotropic material. That assumption has been previously used by Yang et al. to 

study the propagation of mechanical waves in an arrangement of uniaxial plates via a propagator matrix 

approach [40] and by Varadan et al. who used nondestructive ultrasonic testing measurements to 

determine the direction of the major and minor axes of polarization in a helicoidal composite and find a 

match between computed and experimental results [42]. This assumption has been used in previous 

theoretical and experimental biomimetic studies of arthropods [24], [43], [44]. Furthermore, for the case 

of the American Lobster, Nikolov and workers [31], [32] presented that the anisotropy in the elastic 

properties of the cuticle decreases monotonically from small to large length scales.  In fact, for the scale 

of interest in this paper (i.e., layers for the Bouligand stacking), their results indicated that the material 

is mostly transversely isotropic. 

 

2.1 Length scale considerations 

To properly analyze the characteristic length scales of the problem, i.e., the wavelength and internal 

microstructural characteristic dimension, we take information from the dynamic impact event reported 

in previous works [5], [7], [10] and compare it to the geometric features identified in the periodic 

region. The optical micrograph in Figure 2a depicts a transverse cross section of the periodic and 

impact regions of the dactyl club. Each line correspond to a complete a 180o-rotation of the fibers [1], 

[7].  The distance between lines, also called pitch distance, D, is plotted in Fig. 2b along the y-direction 

(where y = 0 is the interface between the impact and periodic region) for three different specimens. The 

impact region was included for one specimen as a reference. As it can be observed, both impact and 
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periodic region display a pitch distance gradient varying from 140 m in the impact region to less than 

10 m in the bottom of the periodic region. In some cases, a local maximum in the periodic region near 

the interface with the impact region is observed.  However, even if the values of D have some slight 

variation with specimen, they show the same trend.  

 

 

(a) 

 

(b) 

Figure 2: Pitch gradient in the periodic region. a) Optical micrograph. b) Pitch distance in the periodic region. 

 

 It has been shown by previous experimental [10] and numerical investigations [7] that the impact, 

represented in terms of a stress pulse, has a duration that ranges from ms104.1 2t   to 

ms106.1 1t . In this work, we employ the shortest duration, which translates in a signal rich in 

high frequency content. In order to represent an extreme scenario, we also assume a square shaped 

pulse based on the fact that the use of a time discontinuity in stress requires more high frequency terms 

than the smooth curves measured in [7], [10].  Figures 3a and 3b describe time and frequency domain 

comparisons between our theoretical square pulse and the impact measurement reported in [7]. It is 

observed how the intensity of the Fourier spectrum decreases with frequency in such a way that if we 

take t = 100, we are already considering approximately 99% of energy in the pulse. Using this 

approach, we can estimate a cutoff frequency of Hz104.11 14 . For wave speeds in the range of 500-

5000 m/s, this frequency yields a characteristic wavelength λ that will range between 438 and 4380 μm. 

Considering an average pitch distance of 75 m near the impact region, the ratio D /  ranges from 

0.017 to 0.17. Finally, high resolution SEM studies reported by Grunenfelder et al. [1] revealed the 

presence of ~ 1.13 m mineralized fiber bundles consisting of individual fibrils ranging from 20 to 50 

nm in diameter. Thus, we assume that the ratio between λ and the fibers characteristic length l (i.e., 

fiber diameter and inter-fiber distance) is sufficiently large to consider each layer of unidirectional 

fibers as a homogeneous transverse isotropic material. 
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(a) 

 
(b) 

Figure 3: a) Impact pulse from the stomatopod’s dactyl club strike on a flat target b) power spectra. The 

dashed line represents the waveform for the pulse simulated Weaver et al. [2012]. The solid line represents a 

square pulse that represents higher high-frequency content. Inset: schematics of the dactyl club impacting a 

target as performed in previous experimental and modeling works [7], [10]. 
 

 

2.2 Wave equation for elastic materials 

The particle motion in an elastic solid is governed by the following set of partial differential equations:  

 , (1) 

where u
j
, 

ij
 and b

i
 are the components of the displacement vector, the stress tensor and the body forces 

vector, while  represents the material mass density. In Equation (1) and throughout the paper repeated 

indexes are implied to obey the summation convention unless specifically stated otherwise.  At the 

same time a comma refers to spatial derivatives while dotted variables describe time derivatives.  As 

discussed in [7], a single impact event is unlikely to induce significant damage or large deformation. 

Any accumulate damage in the dactyl club is the result of multiple impact through a long period of 

time. Since our interest is to study a single impact event, the material is considered to satisfy a stress-

strain relationship in the form of Hooke’s law as: 

  , (2) 

where c
ijpq

 is the stiffness tensor comprising 5 different parameters in the case of a transverse isotropic 

material [45]. In our particular case, the values of c
ijpq

 are based on [7], [27], [31] for the periodic 

region of the dactyl club.  In a problem involving unbounded media where interest lies in free wave 

motion, body forces are neglected and a solution with the following space-time representation is 

assumed:  

 . (3) 

In (3) U
j
 is the amplitude of the displacement vector in the j direction, k is the wave number,  is the 

propagation direction, and v
p
 is the phase speed of the wave. We assume a time dependence of the form

jiiij ub  ,



jiijpqij uc ,

)( tvxnik

jj
prreUu



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, which is omitted hereafter and where i is the imaginary unit and  is the circular frequency. 

Substitution of (2) and (3) into (1) gives the Christoffel wave equation [37–39]: 

 , (4) 

where  is the so-called Christoffel stiffness tensor, while  is the identity tensor. 

Equation (4) has no-trivial solution if:  

 , (5) 

which leads to the existence of three types of bulk waves [37], [39] namely: a quasi-P wave (with 

polarization direction almost equal to the propagation direction), a quasi-S wave (with polarization 

direction almost perpendicular to the propagation direction), and an S-wave (polarized orthogonal to the 

quasi-S wave and to the direction of propagation). The solution of Equation (5) gives the phase speed 

for each type of polarization, and, consequently, the speed of each wave depends on the direction of 

propagation. 

 

2.3 Layered Model 

A material element cell is represented by an arrangement of N stacked layers of unidirectional fibers 

embedded in a matrix of thickness d and a pitch distance D. Such material element cell represents the 

behavior of the bulk Bouligand structure inside the dactyl club. As such, our main assumptions are: (1) 

the radius of curvature of the layers is much larger than D, and (2) there are enough layers to ignore 

boundary effects from the impact region or the inner portion of the dactyl club. Figure 4 shows the 

material element cell in the form of N helicoidally stacked layers of fibers representative of the periodic 

region of the dactyl club already shown in Figure 1f. It should be noted that this model does not 

explicitly consider one fiber across the thickness of an individual layer as depicted in Fig. 4. Instead, 

the presence of randomly distributed, but unidirectional chitin fibrils surrounded by amorphous mineral 

are accounted in the elastic behavior of a homogeneous transversely isotropic layer. Each nth layer 

forms an angle αn = (n  1)α with the global x-axis, where n is the layer number and α is the pitch angle 

formed between two adjacent layers of unidirectional fibers. The N layers complete a 180° rotation 

through a pitch distance D=Nd. 

Helicoidal materials as the one described in Figure 4 are known to exhibit shear wave filtering [40], 

[42], [46] thus we use such a model to quantify these filtering capabilities in the case of the dactyl club 

of stomatopods. We analyze the response of the material cell in terms of dispersion relations for a range 

of values of the mechanical material parameters and microstructural dimensions. The resulting curves 

are then compared with the Fourier spectra for the input pulse. Since the material has been modeled as 

stacked (homogeneous) transverse isotropic layers, we adopt as solution method the propagator 

matrix  [47] where the three-dimensional partial differential equations are converted into a system of 

ordinary differential equations using constitutive equations and continuity between layers. Moreover, 

the periodic nature of the unit cell is considered through the imposition of Bloch periodic boundary 

conditions. It has been suggested that between 10 and 50 unit cells the periodicity of the material can be 

taken into account [17], in our case we have between 30 and 50. 

  

tie 

0][ 2  kikpik Uv 

qiijpqik nnc ik

0]det[ 2  ikpik v 
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Figure 4: Schematic of the layered model. The parameter, D is the pitch distance (i.e., the distance to make a 

rotation of 180º); d is the layer thickness; N is the number of layers in each pitch; and αn is the angle for the 

nth layer, i.e., αn = (n-1) α. (right) Orientation of a layer with respect to the global coordinate system. The 

material coordinate system is depicted in the upper right corner, 1 is the direction along the fiber primary axis 

while 2 and 3 are both perpendicular to 1. In the bottom we show how each unit cell is repeated along the z-

axis to form the periodic material as a whole. 

The equation of conservation of linear momentum without body forces admits a solution of the form 

  (6) 

 , (7) 

where U
r
 is the amplitude of the displacement vector in the r direction, S

pq
 is the amplitude of the pq 

component of the stress tensor and where k
x
 is the x component of the wave vector. Unless explicitly 

stated otherwise all the indexes refer to components in the global coordinate system. Substitution of (6) 

and (7) into (1) yields after conducting some algebraic manipulations the equation of motion for each 

layer in the form of a system of ordinary differential equations as [40]: 

 , (8) 

and where V(z) = [Ux, Uy, Uz, Sxz, Syz, Szz]
T  is a state vector given by the 3 components of the 

displacement vector and the 3 components of the stress tensor that need to be continuous across the 

)exp()(),( xikzUzxu xrr 

)exp()(),( xikzSzx xpqpq 

)(][
)(

zVPi
dz

zdV

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interfaces. In this equation [P] is a coupling 66 matrix that contains the material information of the 

composite and which explicitly reads: 

 

 , (9) 

with 

 

 

(10) 

 

 

(11) 

 
 

(12) 

 . (13) 

and where the terms CIJ refer to components of the stiffness tensor (cijkl) represented in Voigt notation, 

where second and fourth order tensors are collapsed into R6 vectors and 6×6 symmetric matrices 

respectively [48].  Here the components of the stiffness tensor CIJ are given in the local coordinate 

system (see Figure 4). 

Equation (8) has a general solution of the form: 

 V(D)=[Q]V(0). (14) 

where the matrix [Q] is defined by 

          ,expexpexp][ 1111 dPidPidPiQ NNNN   (15) 

which results after considering displacement and traction compatibility along the interfaces of the N 

layers in the composite according to the propagator matrix formalism [49], [50]. In (15) [P
s
] is the [P] 

matrix for the sth layer of corresponding thickness d
s
, and exp refers to the matrix exponential. It is now 

evident that the matrix [Q] has the information of the material, lamina distribution and angle change in 

the composite and it establishes a relationship between the state vector at the beginning of the first layer 

and the state vector at the end of the last layer. 

The periodic nature of the composite material found in the dactyl club is now considered through 

boundary conditions imposed in the form of Bloch’s theorem as applied in the theory of phononic 
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crystals [16], [17]. In our context we assume the spatial periodic repetition of the N layers leading to the 

following relationship involving a phase shift across the cell: 

 V(D)=V(0)exp(ikD), (16) 

which leads to the following eigenvalue problem  

 [Q]V(0)= γV(0) , (17) 

with =exp(ikD). 

Thus, the proposed representation for the material cell together with the assumption of periodicity 

translates into an eigenvalue problem for each frequency, , which allows us to find the dispersion 

curves providing information about the bulk behavior of waves in the material [18], [51]. The specific 

nature of the eigenvalue  indicates whether the wave is a propagating wave, in which case it implies a 

change in phase, or if, by contrast, it is an evanescent or decaying wave, where it indicates a change in 

amplitude.  Whenever ||=1, we observe propagating waves of real wave number k; when ||<1, we 

obtain evanescent waves whose amplitude decays in the direction of incidence and finally, when ||>1, 

we obtain evanescent waves with amplitude dying out in a direction opposite to the direction of 

incidence. For propagating waves, each frequency  in the eigenvalue problem yields a set of 

wavenumbers 
21

,, ssp kkk   related to longitudinal waves (k
p
) and transversal waves (k

s
1

 and k
s
2

). Here, 

the plus sign refers to a wave in the direction of the incident wave while the minus sign refers to a wave 

in the opposite direction of the incident one. In the case of evanescent waves, the eigenvalues should be 

given by complex conjugates and the magnitude || could be understood as the factor in which the 

amplitude changes from one cell to the other [50]. This last case is highly relevant in our study since it 

demarks the region of existence of a bandgap where the material microstructure exhibits actual filtering 

capabilities. 

 

3 Results and Analysis 

The primary purpose behind a dispersion analysis is the determination of the potentially existing 

propagation modes in a material, through the study of a single elementary cell under the assumption of 

spatial periodicity. Here, these modes are determined for different combinations of mechanical 

properties and dimensions of the microstructural features (i.e., pitch distance, pitch angle and layer 

thickness) in the dactyl club of the stomatopod, with the goal of identifying those combinations for 

which shear wave filtering is most effective under typically sustained impact loads. A dispersion curve 

gives the variation of circular frequency against wavenumber (or wavelength) for an elementary cell 

and it provides an objective description of the propagation properties of the material as the analysis 

reveals not only the phase and group velocities but also the existence of bandgaps or frequency ranges 

where waves are forbidden to propagate. As discussed previously, here we use the propagation matrix 

formalism together with Bloch’s theorem to consider the spatial periodicity and the layered nature of 

the elementary material cell conforming the impact region of stomatopods. 

Figure 5 compares the normalized frequency (i.e., ωd / cπ) versus normalized wave number (i.e., 

κD / π) dispersion curves for different configurations of helicoidal composites, after assuming values 

for the relevant mechanical and geometrical parameters of the periodic cell.  In particular we used 

E1 = 30 GPa, E2 = 15 GPa, G12 = 0.7 GPa, ν12 =  ν23 = 0.25 and a mass density ρ = 1400 kg/m3 which 

correspond to values close to the ones reported in [7] for the periodic region of the dactyl club. The 

values for the Young modulus and density are taken from [7]. ν12 and ν23  were adopted from [31]. 

These values are also close to the experimental results presented in [27] (where ν12 =  ν23 = 0.28). Given 

the uncertainty on these properties, we employ a range of ν12 and ν23 from 0.25 to 0.3. Regarding the 

w
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shear modulus, we obtained the order of magnitude from Nikolov et al., and we varied the value from 

0.35 to 0.7 GPa  (keeping the same order of magnitude) and recompute the transmitted energy. 

 

The dispersion curves correspond to values of the pitch angle α = [10°, 20°, 30°, 45°, 60°, 90°] . We 

used a reference material velocity of c = 4629 m/s defined according to c2 = E1/ ρ and a layer thickness 

to wavelength ratio d / λ = 0.021. In each curve, the presence of a bandgap is highlighted by a shaded 

gray area completely delimiting the forbidden frequency range. We also added the Fourier spectrum 

amplitudes to these plots, to identify the effectiveness of each configuration in filtering dynamic 

energy. A direct comparison between these spectra and a bandgap will reveal zones where the filtering 

of energy is more effective. 

 

  

  

a b 

d c 
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Figure 5: Dispersion relations for different parameters values. In all the cases, d/λ=0.021 and c=4629 m/s. The 

dotted line depicts the spectrum of the impact, the dashed line corresponds to the longitudinal wave, and the solid 

lines are the quasi-shear waves. We depict the bandgap as the grey region. Angle between layers: a) α= 10º, b) 

α= 20º, c) α= 30º, d) α= 45º, e) α= 60º, f) α= 90º.  

Yang et al. [40], [42] demonstrate that a helicoidal structure is detectable with transverse waves 

since shear waves would suffer a change in polarization due to rotation in the vibration direction 

between two adjacent layers (producing a filtering effect). By contrast, the chirality of the composite 

does not affect the propagation of longitudinal waves. Thus, volumetric incident waves would travel 

through the material without suffering any dispersion. Since shear and tensile stresses are harmful to the 

microstructure of the fibrils, filtering these shear waves would have a protective or damage tolerating 

effect in the inner layers which are highly susceptible to damage. This is helpful to the material since 

the layers in the dactyl club are generated from the inside out. It is therefore observed from the 

dispersion curves that the P wave mode (indicated by dashed lines in Fig. 5) is insensitive to the 

orientation of the fibers due to the perpendicular nature of the incident wave combined to the 

longitudinal vibration of the particles. By contrast, the transverse, or S wave, modes are dispersive and 

exhibit bandgaps. The size in the frequency range delimiting the bandgap is also observed to increase as 

we increase the pitch angle. Such variation in the size of the bandgap is accompanied by a shift in the 

cutoff frequency towards the high frequency regime. This trade off (between an increase of size and 

shifting of the bandgap) suggests the presence of a value where the filtered energy is a maximum. 

To assess the potential ability of the stomatopod to tolerate the high intensity impact pulse produced 

upon its daily hunting activity, we now obtain the fraction or amount of energy contained in a single 

pulse that is actually transmitted by the different microstructural configurations. This is achieved after 

computing the difference between the total strain energy density imparted by a typical stress pulse and 

the amount of energy lying inside a band gap bounded by frequencies ω1 – ω2  and associated to a 

specific microstructural configuration. This transmitted energy, shown as the shaded area in the 

schematic representation of Fig. 6, is given as 
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where 𝑌 is a conveniently selected elastic moduli of the material which has been introduced for 

dimensional consistency. 

 

 

Figure 6: Regions for passing and no-passing energy. The passing energy is computed as the shaded region over 

all the area under the curve. The band gap is denoted by frequencies 1 and 2 denoted by the horizontal (red) 

lines.  

 

The performance of the different micro-structural configurations is compared on the basis of the 

fraction of transmitted energy  (or ratio between the transmitted energy and the total energy imparted 

by a single pulse. totalE ) defined as: 

 

total

trans

E

E
  (19) 

The elastic moduli Y in Eq. 18 is the same for totalE . Figure 7 compares the performance of the resulting 

microstructures from different perspectives. Here, we introduce two dimensionless frequencies, 

 = Df/(2πc)=D/λ and θ = dω /(2πc)=d/λ which define ratios between the relevant microstructural 

lengths and the wavelength of the propagating wave. The value used to normalize in Fig. 7 is 

λ = 438 μm. These dimensionless frequencies satisfy the relationship  = N. In particular, Fig. 7a 

shows the variation of  with respect to  (and ) for different values of  = D/. Our first 

observation is that for low values of D/there is total transmission (i.e.,  = 1.0). This is due to the 

fact that the microstructure responds mechanically as a homogeneous material when >> D.  shows a 

significant reduction for values of D/> 0.1. For small number of layers (N < 3), the fraction of 

transmitted energy decreases almost linearly as a function of N. For most values of D/ increases for 

N > 3 until it stabilizes for N > 10 (d < D/10) to a constant value which is independent of the number of 

layers.  This constant value of  is plotted as a function of D/ (inset, Fig. 4a) where it is shown that  

is minimized for a certain range of D/and increases asymptotically back to  = 1.0 for larger values 

of D/λ. This means that the microstructure ceases to be effective in filtering the impact energy for D/ 
> 2. 

 

N



14 

 

(a) 

 

(b) 
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(c) 

Figure 7: a) Fraction of transmitted energy, η vs. N for various values of D/. The inset plot shows η for N → ∞. 

For comparison purposes the range of the stomatopod microstructure is indicated by the shaded area. b) η vs. N 

for various values of d/.  c) η vs. D/ for various values of d/.   

 

Figure 7b shows the variation of  with respect to  (and ) for different values of d/. In this case, D 

increases with N and since each specific plot corresponds to a constant value of the layer thickness d, a 

constant value of N implies a different value for the pitch distance, D. A direct comparison between 

these plots and those in Fig. 7a suggest that performing variations in the parameter D/λ seems more 

effective in the control of the fraction of transmitted energy η. This is especially relevant if we want to 

extend this concept to manmade fiber-reinforced composites, where the prepreg thickness (typically 

predetermined by the manufacturer) limits the choice of d/λ. Thus, given a particular thickness d, one 

can choose the pitch angle α that is required to achieve a targeted η. This analysis in terms of fraction of 

transmitted energy indicates that there is a stronger dependence of the transmitted energy on the 

dimensionless pitch distance D/λ. Finally, Figure 7c shows the variation of  with D /  for different 

values of d / . It should be noted that Fig. 7c provides the same information plotted in Figs. 7a and b. 

Variations of D /  also indicated variations in N and  for constant values of d / . However, this 

figure shows that when d /  < 0.2, most of the  vs. D/curves are similar and follow a similar 

‘master’ curve. Deviation from this curve takes place when d /  > 0.2, where it is possible that the 

wave begins to interact with the characteristic microstructural length l. 

 

Given the uncertainty on these properties, we employ a range of ν12 and ν23 from 0.25 to 0.3, and 

computed η(D,N). To see the differences we computed the relative error between the two functions, i.e. 
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what gives a relative error of 0.39 %. For the minimum of the curve (0.7) this represents a 0.12 % of the 

total energy, showing that the transmitted energy is not that sensitive to changes in the  Poisson ratio. In 

the case of the shear modulus, we varied it from 0.35 GPa to 0.7 GPa (keeping the same order of 

magnitude) and computed η(D,N) in each case. One more time, the relative error was computed as 

 

2

2

)GPa7.0;,(

)GPa7.0;,()GPa35.0;,(
error






GND

GNDGND




 

what gives a relative error of 8.75 %. And, for the minimum of the curve (0.7) this represents 2.63 % of 

the total energy. 

 

4. Conclusions 

Using the model of a periodic Bouligand-like structure identified by Weaver et al. [7] in the 

Stomatopod’s dactyl club, we have conducted a study intended to elucidate some of the physical 

mechanisms responsible for the amazing capabilities of the stomatopods dactyl clubs to sustain high 

intensity dynamical impacts assuming that the material remains elastic during every single impact. For 

that purpose, we combined the propagator matrix formalism to represent the layered helicoidal 

structure, with Bloch-Floquet periodic boundary conditions to account for the spatial periodicity. Using 

this approach, we were able to identify a dispersive response, with related bandgaps, for propagation 

modes related to shear waves. These frequency bandgaps were also shown to correspond with the 

characteristic frequency bands generated from the stress pulse experienced by the dactyl club during the 

stomatopod’s hunting activities. In order to quantify the potential filtering effect of such periodic 

microstructure, we have also conducted a parametric analysis to study the variation of the fraction of 

transmitted energy with the number of layers that conforms a representative material cell. We varied the 

ratio of pitch distance to incident wavelength, D/λ, and the ratio between the layer thickness and the 

incident wavelength, d/λ. These values undoubtedly govern the number of layers N and pitch angle a, 

which are part of the microstructural design. For values of D/λ between 0.005 - 0.23 and for a number 

of layers sufficiently large (N >10), which is presumed to be found within the dactyl club, we found 

fractions of transmitted energy in the range 0.7 - 1.0. This regime is indicated as shaded area in the inset 

figure of Fig. 7a. It is thus concluded that in addition to possible inelastic and damage effects, the dactyl 

club appears to have the ability to sustain high intensity dynamical loads through a shear wave filtering 

capability introduced by the periodic nature combined with the chirality of its hierarchically arranged 

microstructure. Lessons from this study could provide relevant design guidelines for the fabrication of 

biomimetic impact-tolerant fiber-reinforced composite materials. Future work will focus on employing 

these models to make predictions and optimize composite designs for very specific applications. 

Certainly, how efficient the composite will be to absorb energy will depend on the impact conditions. 

As such, optimum pitch angle, D and d can be determined if the frequency spectrum of the impact is 

fully understood. 
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